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Abstract

Power meters have been available in endurance sport since the 1980s and provide
useful insights to individualized training programs in order to improve the effectiveness
of training sessions. This also helps in reducing injury risks. In gym context, especially
for functional fitness (FF), nowadays it is not possible to measure the power output (PO)
of athletes, thus making it difficult to understand how different training sessions can
affect athletes’ bodies, both in terms of performance and fatigue.

The main aim of this study is to develop a new inertial measurement unit (IMU)-based
power meter to be used in FF contexts and to validate it against a gold standard, a
combination of a motion capture system (MoCap) and 4 force plates. Additionally, an
investigation about the best configuration of sensors to be used is carried out.

Seven well trained FF athletes took part in this study. They were asked to perform some
FF movements (burpees, clean and jerks, lunges, snatches and thrusters) while being
recorded by 3 IMUs placed on them (chest, wrist and ankle) and by the gold standard
system. A Python algorithm applied to IMU data estimated PO and this was compared
with the PO computed from the gold standard. The new power meter estimated the PO
with two different approaches: the force approach (FA), based on the formula P=F*v,
and the energy approach (EA), based on mechanical energy.

Both FA and EA showed very high to almost perfect correlation with the gold standard,
with the best correlation (0.927) provided by FA with the configuration with 2 sensors
at chest and wrist, when comparing the full PO curve. Analyzing average positive and
negative power, total positive and negative work and peak positive and negative power,
FA showed better estimations despite a general underestimation of around 10% for all
the metrics analyzed and with a RMSE around 25% (after the correction of the raw
estimations, while raw PO overestimates the MoCap by around 33%).

The correlations between IMU and MoCap found in this study are in line with the values
found by other studies. A comparison of the other metrics with literature is difficult due
to a lack of similar types of studies. Despite that, studies comparing IMU and MoCap to
estimate PO during countermovement jumps found a percentage overestimation
around 25%, close to the raw estimation of around 33% of this study.

This study showed that the best method to estimate PO with IMUs is FA. Moreover,
even if the 3-IMU power meter showed promising results, the configuration with just
two sensors (at chest and wrist) provided slightly better estimations.

Keywords
IMU, MoCap, Functional Fitness, CrossFit, power meter, validation
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Sammanfattning

Effektmatare har funnits inom uthéllighetsidrott sedan 1980-talet och ger vardefulla
insikter for individanpassade traningsprogram i syfte att forbattra effektiviteten i
traningspassen. Detta bidrar ocksa till att minska risken for skador. Inom gymmiljoer,
sarskilt inom funktionell fitness (FF), ar det idag inte mojligt att méta idrottares
effektutveckling (PO), vilket gor det svart att forstd hur olika traningspass paverkar
kroppen, bade vad géller prestation och trétthet.

Det huvudsakliga syftet med denna studie ar att utveckla en ny effektmétare baserad pa
inertialmatsystemer (IMU) for anviandning inom FF och att validera den mot en
guldstandard, en kombination av ett rorelseanalyssystem (MoCap) och 4 kraftplattor.
Dessutom genomfors en undersokning av vilken konfiguration som ar mest lamplig.

Sju valtranade FF-atleter deltog i studien. De ombads utfora olika FF-rorelser (burpees,
clean and jerks, lunges, snatches och thrusters) samtidigt som de registrerades av tre
IMU-enheter placerade pa brostkorg, handled och fotled samt av
guldstandardsystemet. Ett Python-algoritm applicerades pa IMU-datan for att
uppskatta PO, vilken sedan jamférdes med PO berdknad fran guldstandarden. Den nya
effektmitaren uppskattade PO med tva olika metoder: kraftmetoden (FA), baserad pa
formeln P = F*v, och energimetoden (EA), baserad pa mekanisk energi.

FA och EA visade mycket hog till niastan perfekt korrelation med guldstandarden, med
den bista korrelationen (0,927) for FA med konfigurationen med tva sensorer pa brost
och handled vid jamforelse av hela effektkurvan. Vid analys av genomsnittlig positivoch
negativ effekt, total positiv och negativ arbetsinsats samt toppvarden for positiv och
negativ effekt visade FA battre resultater, trots en generell underskattning pa cirka 10%
for alla analyserade méatviarden och med ett RMSE pa cirka 25% (efter korrigering av
den raa PO, 6verestimerar den raa PO med cirka 33% jamfort med MoCap).

Korrelationerna mellan IMU och MoCap som hittades i denna studie ligger i linje med
de varden som rapporterats i andra studier. En jamforelse av 6vriga matvarden med
tidigare litteratur ar dock svar pa grund av brist pa liknande studier. Trots detta har
vissa studier som jamfort IMU och MoCap vid uppskattning av PO under
countermovement jumps rapporterat en 6verskattning pa cirka 25%, vilket ligger nara
den raa overskattningen pa cirka 33% i denna studie.

Studien visar att den mest tillforlitliga metoden for att uppskatta PO med IMU ar FA.
Dessutom visar resultaten att daven om en effektmitare med tre IMU:er ger lovande
resultat, s& ger konfigurationen med endast tva sensorer (pa brostkorg och handled)
négot battre skattningar.

Nyckelord

IMU, MoCap, Functional Fitness, CrossFit, effektmatare, validation
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Introduction

Power meters have shown, since their first development in the 1980s, that they
are useful tools that can help in developing more efficient training programs for
athletes and in reducing the risk of injury [1]. Despite these benefits, their
adoption is still mainly in endurance sport [2], especially cycling, while their
presence in gym contexts is limited to machinery like the bicycle, the rower or
similar. One sport that could benefit a lot from the usage of a power meter could
be functional fitness: indeed, due to the high variability in the exercises
prescribed for each session and the difficulties of estimating the impact of each
exercise on the whole program [3], a reliable method that can assess the
performance of the athletes, helping in developing a better understanding of
how their bodies are reacting to the stimuli provided them, can help in booster
athletes performance keeping, at the same time, injury risk at bay. So, this work
consists of one article that shows the development of an inertial measurement
unit (IMU)-based power meter designed for functional fitness athletes and its
validation against a Motion capture system (MoCap) coupled with 4 force plates.

This work provides a broader context, discusses methodological choices in
detail, and reflects on the implications of the findings for on-field application
and future research.






Background

Since 1980s, when the first power meter was developed [1], power as a sport
metric has gained more and more attention by several disciplines. The early
adopters of this technology were cycling teams [1] while, in more recent years,
thanks to the evolution of IMU sensors, easy-to-use tool to monitor power
allowed the possibility to monitor this parameter in an increasing number of
other sports, such as running [2]. The underlying reason behind its wide
adoption it that the power meter provides useful insights for assessing
performance with reliability. Nevertheless, while this metric, and the relative
device to measure it, is well established in the endurance sports, in the gym
context it is available just for those machineries that allow for endurance
training, such as the rowing machine and the bicycle. In all the other gym
disciplines there is not a consensus about which metrics to use to assess
performance, and this is particularly true for functional fitness. [3]

In Functional fitness, of which CrossFit® is the most popular example, the main
problems in trying to assess athletes’ performance are two, according to
Mangine and Seay [3]:

1. Different parts of the training sessions are measured with different
methods that output metrics with different units;

2. The same exercise, put in different parts of the training session, can
produce different stresses in the body that can be difficult to quantify
using separate metrics for every training component.



There have been many attempts to try to overcome the problems before
mentioned and trying to quantify and compare different workout strategies in
functional fitness but, as stated earlier, a consensus has been not achieved.

For this reason, it seems promising to try to introduce a power meter, and the
performance assessment that it enable, into the functional fitness world. The
main barrier to its adoption, though, is the lack of such a device that can work
specifically for functional fitness. Indeed, the great variety of movements
performed by the athletes and the fact that they may have breaks in the middle
of the movements pose difficulties in an effective estimation of the power output.
This study aims to bridge the gap between the necessity of performance
monitoring in functional fitness and the lack of a power meter that can help in
this. To do so, an IMU-based power meter designed for functional fitness is
developed and validated against MoCap.



Research Methodology

This section, with all its subsections, will go deeper into the methodology that
was followed during the study. In particular, the focus will be on the design of
the research questions, on how the literature review that has been conducted
and on the methodology approach.

3.1 Design of Research Questions

The initial interest in this research was the idea of applying power output, a
metric wildly used in many sports to assess athletes, to functional fitness. To
start to dig into this topic, preliminary research in the literature was performed
to see if there were already previous studies that attempted to apply power
output in order to assess performance in functional fitness athletes. The results
provided no results other than some articles highlighting the necessity of power
monitoring, to be able to improve performance, and some initial estimation of
power output in some specific movements such as clean and jerks and snatches.
These first estimations, though, were performed analyzing video recordings of
the movements or with rough calculations based on simple physical laws. So,
there seemed to be a lack of reliable methods to provide power output
estimations almost in real time, in order to give athletes useful feedback.
Contextually, during the power estimation literature review, many articles about
the estimation of power during countermovement jump with the use of IMUs
appeared. So, the following research questions were formulated:

e How is it possible to sum up all the suggestions available in literature in
order to develop an IMU-based power meter?



e How accurate and reliable can the power estimation of a device like this
be?

These questions seemed to be the first step to try to bridge the current gaps in
literature. The decision to investigate both the possible technical approaches to
develop the power meter and the validity of such a device contributed to a real
advancement in the possibility of athletes monitoring, not only producing a tool
that works in theory, but also proving how reliable the provided power
estimations are.

Other research questions were taken into consideration. For example, a question
could have been if it was feasible to develop a power meter for functional fitness
with other technologies rather than IMUs, or which technology was the best
solution to develop such a device. These questions were excluded because the
idea was to have a working prototype of the power meter after the study and, to
mainly focus on the research and development of several solutions with different
technologies would have taken too much time to be able, then, to perform a good
validation study with all of them. So, considering the promising results provided
by IMUs in the countermovement jump power estimation and in other sports,
the decision was to focus directly on them. Other questions, in addition, were
not taken into consideration because they were referring to a later stage of the
path toward bridging the literature gap. For example, a question could have been
if the use of a power meter in functional fitness is really effective and, in that
case, how the use of a power meter would have benefitted functional fitness
athletes both from a performance and from an injury risk reduction perspective,
so an assessment of the real differences that can be made with a device like this
in the design of training programs.

3.2 Introduction Framework

To develop the Introduction section of the study, a literature search was
employed to ensure the inclusion of relevant and high-quality literature.
Searches were conducted in PubMed and Google Scholar, as these databases
cover a wide range of medical, technical, and interdisciplinary research.

The following keyword combinations were applied:

¢ ("mechanical power" OR "power output") AND ("functional fitness" OR
"CrossFit")

e ("power output" AND "IMU") AND (“functional fitness” OR “CrossFit”)

e ("power output" AND "IMU" AND “sport”)



e (“power estimation” OR “power output estimation”) AND “sport”
e (“IMU” AND “placement” AND “optimization” AND “sport”)

The search yielded 735 articles considering the following inclusion criteria
applied:

e Articles published after 2015 to ensure the latest advancement in the
technology for the IMU and the most recent researches in the functional
fitness field.

e Peer-reviewed journal articles or conference proceedings.

e Studies evaluating strategies to monitor power output or performance in
functional fitness or other sports, studies evaluating the use of IMU in
functional fitness or other sports and studies evaluating optimal IMU
placement in sport.

Some more articles were found reading the bibliography of articles that were
particularly centered on one of the topics of interest. After reviewing titles and
abstracts and removing duplicates, 51 articles were selected for full-text review,
and ultimately, 27 articles were included in the final background section.

During this process, it was observed that there were some studies trying to
estimate power output in functional fitness or trying to find methods to assess
athletes’ performance but there were no studies providing reliable tools that
could help in assessing athletes regarding this aspect. This confirmed the need
for an effective and reliable power meter to be used in functional fitness.

3.3 Methodology Approach

A quantitative-method approach was selected to address the research
questions effectively. This approach used the quantitative data reported in
literature to select the strategy to develop the power meter and then the
validation part was carried out with a quantitative analysis of the newly
developed power meter to determine its accuracy, precision and agreement with
MoCap.

3.3.1 Power output estimation strategies

To address the first research question, data available in literature were used and
combined to come up with the best strategies to estimate power.



This method was chosen because it provided a solid foundation for developing a
device that could estimate power based on already tested conceptual models. An
alternative approach could have been just focusing on biomechanics and physics
laws to find a completely new estimation strategy. This approach, though, was
discarded as it would have required a longer time only to generate a strategy that
was not proven to work in practical terms, requiring an additional step to verify
the theory behind the estimation strategy first.

3.3.2 Power meter performance evaluation

To address the second question, power meter performance in estimating power
output was evaluated recording functional fitness movements in a laboratory
both with the IMUs and the MoCap, used as gold standard, and then the power
output obtained from the two systems was compared in order to determine the
following aspects:

e Accuracy of the estimation: the power meter’s ability to produces results
close to the gold standard one;

e Precision of the estimation: the power meter’s ability to produce results
that are close between them;

e Agreement of the estimation: the power meter’s ability to be consistent
with the values produced by the gold standard system.

This method was chosen because it provided good quantitative metrics to
quantify the performance of the new power meter compared with the gold
standard instrument for computing the power output, the MoCap. An
alternative approach could have been to validate the device directly in a gym,
instead of a laboratory, but no reliable ground truth systems were found to be
suitable for a proper validation study.

3.3.3 Alignment with Research Questions

The chosen methodology was designed to directly align with the research
questions:

e Literature data combination addressed the first research question by
providing a proven model to estimate power;

e Power meter evaluation against a gold standard system in a laboratory
allowed to answer to the second research question by providing
quantitative results to assess its performance in estimating power in a
high controlled environment.



By combining these methods, it was possible to have a solid and verified
estimation model to be used for the power meter and then to validate the device
with limited amount of possible interfering factors.

One limitation of the present methodology is that the movements were recorded
in a laboratory, so outside of the usual environment of the athletes. Moreover,
the athletes had 70 reflective markers on their body to record the movement
with the MoCap system, and they were forced to perform all the movements on
4 force plates, thus with possible modification of athletes’ technique during the
test. Future studies could try to find reliable systems that allow the test to be
carried out in a gym, where athletes are free to move without the constraints of
the laboratory. Additionally, the sample size for the test was limited to 7
participants, which may not be representative of all athletes, thus limiting the
generalizability of the findings. Expanding the study to include more athletes
and, maybe, with different levels of ability could provide a broader perspective.



Summary of Article

The following sections will highlight the main findings of the study, reporting
shortly the results and the discussion that can be found in their complete version
in the study paper.

4.1 Results

The results of this study showed that two approaches are possible for estimating
power output from IMU data: the first one, the force approach (FA), is based on
the definition of power (P) as product of force (F) and velocity (v), according to
the formula P = F * v, while the second one, the energy approach (EA), is based
on the definition of power as work performed, or energy transferred, over time
by the athlete. This second approach computes power (P) as the difference in

A(Ekin+Epot)

v , where

mechanical energy over time, according to the formula P =

Exin = % +m * v? is the kinetic energy and E,,; = m+* g * h is the potential
energy, the two components of mechanical energy.

When comparing the results of the power output estimated with these two
methods with the power output computed using MoCap, both the approaches
showed very high to almost perfect correlation using Pearson correlation
coefficient. FA showed a slightly better correlation compared to EA (r = 0.908
for FA vs r = 0.894 for EA, in the configuration with 3 sensors). This is in line
with other studies that compared the correlation between IMU and MoCap:
indeed, Jimenez-Olmedo et al. [4] reported a correlation of 0.847 for the pelvis
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level, while other studies [5], [6], [7] reported a correlation between 0.72 and
0.95 for IMU worn at torso level.

When analyzing the best configuration between the one with 3 sensors (ankle,
chest and wrist), the ones with 2 sensors, one with sensors worn at ankle and
chest (2a) and one with sensors worn at chest and wrist (2w), and the
configuration with just one sensor at the chest, the best correlation was obtained
for the configuration 2w, both for the force approach and the energy approach.

Investigating accuracy and precision for the two approaches and their
agreement with the MoCap, two different scenarios were analyzed: in the first
one the data outputted by the newly developed power meter were compared
directly with the MoCap (raw estimation), while in the second scenario a
correction to the estimation was applied before the comparison (corrected
estimation). The correction was done based on the linear regression equations
computed between the power meter power estimations and the MoCap
estimations.

Considering the raw estimations, both the approaches overestimated the power
output in all the metrics analyzed (average positive and negative power, total
positive and negative work and peak positive and negative power) by around
33%. The energy approach outperformed the force approach in almost all the
metrics in agreement and accuracy (mean percentage error: 34.2% FA vs 28.1%
EA, excluding the only metric better estimated by the FA, peak positive power,
which has an accuracy of 31.61% FA vs 59.02% EA), while the precision is the
same for both methods. No similar studies compared power output estimation
for functional fitness movements, but some studies compared the mean power
output for countermovement jump estimated with IMU and with force plate as
gold standard. Despite the movements are different, it was possible to compare
their percentage error with the one found in this study to have a general idea of
the power meter performance. Rantalainen et al. [6] reported a percentage error
of 25.8%, smaller than the 36.14% found in this study with FA and the 31.54%
with EA. But, as already mentioned, the movements are different, so a direct
comparison is difficult.

After the correction, precision, accuracy and agreement improved for all the
metrics and with both approaches, but still showing a big difference in the
estimation of peak positive power: the mean percentage error becomes -10.2%
for FA and -10.7% (excluding the peak positive power, which accuracy is -2.55%
for FA and 22.40% for EA). As it is possible to see from the percentage error,
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after the correction both the approaches underestimate the MoCap data except
for the peak positive power for energy approach.

Finally, considering the best sensor configuration, the 2w estimated using FA
showed to be the one providing the best results (mean percentage error: -8.9%
for configuration 3 vs -7.3% for configuration 2w).

4.2 Discussion

Power output estimated with the newly developed power meter showed a very
high to almost perfect correlation with the power output computed from MoCap
when comparing the power curves for the whole duration of each movement.
This indicated that the new IMU-based power meter can be a valid tool to be
used in estimating power and this was supported by the analysis of some metrics
derived from the whole curve, as the one already mentioned in the results
section. Indeed, considering that, at the moment, there is nothing that can help
coaches and athletes to have indications for the development of training
programs and to assess performance in athletes, the power meter developed in
this study can give a lot of useful information and can help in improving
performance and in reducing, at the same time, the risk of injury. Of course, it
must be taken into account that the best configuration found in this study (the
one with 2 sensors applied at chest and wrist and with power estimated with FA)
has still a 7% bias toward the underestimation in its power estimation but, for
now, this value is considered acceptable to be used in a sport context. For the
future some other strategies can be implemented and tested to try to further
reduce the bias and increase the accuracy of the power meter.

Thanks to these findings, it is now possible to bridge the current gap existing
between endurance sports, where power meters have been used for many years
to assess performance and design highly individualized training plans, and
functional fitness, where nowadays there are still debates on how to properly
measure athletes’ performance. From now on, it will be possible to estimate
power produced during the different parts of a functional fitness training
program, in order to have a broader view over each training session.

12
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Fulfillment of Learning Outcomes

This section will show how the common goals and assessment criteria of the
Degree project course have been achieved with the thesis work presented in the
study paper.

5.1 Scientific Knowledge and Methodology

This study shows a deep understanding of the fields of power output in sport,
IMU-based power estimation and the capacity of developing and validating new
devices. A thorough literature review has been conducted to understand state-
of-the-art technologies and methodologies for power estimation in
biomechanical and sport contexts and how IMU can help in this process. Two
main approaches in power estimation, such as the computation of power
according to the formula P = F * v (force approach), or the computation of power
as the rate of mechanical energy transformed over time (energy approach), were
integrated in the development of the IMU-based power meter.

For the methodology part, the study used a quantitative method to validate the
new power meter analyzing its correlation, precision, accuracy and agreement
with a gold standard technology (motion capture). This is the currently most
used approach to validate new measurement systems. More in-details
explanations of the methodology and the choices behind it can be found in the
methodology section (Section 3).
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5.2 Systematic Information Gathering

The literature review process done as basis of this study was conducted using
PubMed and Google Scholar and with specific keyworks combined together in
order to find the most relevant articles. To refine the search strategy, a filter was
used to search for articles published in the last 10 years and to search only for
scientific studies articles. Moreover, reading the bibliography of the articles
proved to be particularly centered on the topics of interest, additional articles
were included in the review process.

The review revealed a lack of studies about reliable and effective ways of
measuring performance in functional fitness, helping in focusing the aim of the
present study. To bridge this gap a new power meter was developed and a
validation study was conducted. The Background section of this article (Section
2), the Methodology part concerning the literature review (Section 3.2) and the
Introduction section of the study show how the information was gathered and
integrated together.

5.3 Handling Complex Questions

The present study deals with two complex questions: the first one is how it is
possible to estimate power output in functional fitness using an IMU system,
while the second one is the precision and accuracy of such a system. For both
the questions there was limited information available in literature, as, presently,
there were not many articles analyzing the different approaches available for
power estimation and no one studying the performance of a power meter device
in functional fitness. Expanding to the use of power meters in other non-
endurance sports, the information remained limited as there were just some
power output estimations done with an IMU during countermovement jumps.
Despite this reduced number of studies, the need for a tool to assess
performance in functional fitness was real, with several articles trying to find
alternative metrics to correctly estimate performance or ways to estimate power
output. These complexities are analyzed and discussed in the “Discussion”
section of the study.

5.4 Planning and Execution

The research followed a structured timeline, with predefined milestones for
literature review, algorithm development for power estimation, data collection,
and quantitative analysis. The initial research plan outlined in the thesis
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proposal was followed, with minor modifications agreed upon with the
supervisor when the data collection phase was prolonged in respect to the period
that was in the plan. The study methodology is explained in detail in the
“Material and methods” section of the study. No big modifications required to
be reported in the study to maintain transparency.

5.5 Clear Communication and Argumentation

The study article follows the typical scientific study structure, with an
introduction section, the material and methods part, the results and the
discussion parts and, finally, the conclusion. This allows for a logical, clear and
well-structured progression of the topics, allowing the reader to have the context
to be able to understand the study results and to grab the implications of what
has been discussed. Moreover, all the key claims presented a strong justification
and were connected, when possible, with similar findings in literature. This can
be seen in the Discussion section of the study, where the main findings of the
study were presented and discussed in a broader context.

No artificial intelligence tools were used in any aspect of the writing phase of the
present work.

5.6 Scientific, Social, and Ethical Assessments

The study considered the ethical, social and scientific implications of developing
a new power meter to be used by athletes and coaches in order to assess
performance and enabling a more accurate training program design. The
ultimate goal is to improve athletes’ performance and reduce the risk of injury.
For this reason, it is important to have a device that is scientifically validated in
order to avoid the risk of providing wrong results that could potentially lead to
injuries in athletes. Indeed, the risk is that wrong power output estimations can
suggest to coaches and athletes some training sessions that could be harmful to
athletes resulting in an injury or, less severe, in a reduction of performance. This
can be seen both as an ethical and social problem, as the athletes need to
suspend training, spend money on healthcare to recover from the injury,
without considering their physical and psychological suffering. These
considerations informed some reflections that were made, for example, in the
Discussion section of this article (Section 4.2) and of the study.
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5.7 Research and Development Readiness

This study highlights the capacity and readiness to work in the research and
development field, especially in the sport sector and using sensors. Indeed, this
work consisted in the assessment of the state-of-the-art with a literature review,
in the the design and development of a new power meter, integrating all the
information found in literature, and in a validation study to assess the
performance of the new device compared to the gold standard. Moreover, in the
Discussion section of the study, it is explained how the findings of this study
contribute to the development of functional fitness, helping the coaches to
unleash the potential of their athletes, but also to the development of new power
meters for non-endurance sports.
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Abstract:

Power meters have been available in endurance sport since the 1980s but in gym context,
especially for functional fitness (FF), it is still not possible to measure the power output
(PO) of athletes, thus making it difficult to understand how different training sessions can
affect athletes’ bodies, both in terms of performance and fatigue. For this reason, the aim
of this study is to develop a new inertial measurement unit (IMU)-based power meter to
be used in FF contexts and to validate it against a combination of a motion capture system
(MoCap) and 4 force plates. Seven well trained FF athletes took part in this study. They
were asked to perform some FF movements while being recorded by 3 IMUs placed on
them (chest, wrist and ankle) and by the gold standard system. The new power meter
estimated the PO with different combination of the 3 IMUs and with two different ap-
proaches: the force approach (FA), based on the formula P=F*v, and the energy approach
(EA), based on mechanical energy. Both FA and EA showed very high to almost perfect
correlation with the gold standard, with the best correlations provided by FA, when com-
paring the full PO curve. Analyzing average positive and negative power, total positive
and negative work and peak positive and negative power, FA showed better estimations
despite a general underestimation of around 10% for all the metrics analyzed and with a
RMSE around 25% (after the correction of the raw estimations, while raw PO overesti-
mates the MoCap by around 33%). This study showed that the best method to estimate
PO with IMUs is FA. Moreover, even if the 3-IMU power meter showed promising results,
the configuration with just two sensors (at chest and wrist) provided slightly better esti-
mations.

Keywords: IMU, MoCap, Functional Fitness, CrossFit, power meter, validation

1. Introduction

Since the 1980s, when the first power meter was developed [1], coaches, sport scientists
and athletes have had the possibility to use a new and very powerful tool to study perfor-
mance: mechanical power output. The early adopters of this technology were cycling
teams [1] which use it to get power profile, training load, and performance assessments
of athletes and also to create tailor-made training zones for every single athlete [2], in
order to develop their potentialities in the best possible way.
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To do this, a concept widely used in cycling is the Functional Threshold Power (FTP): as
reported by Allen et al. [3], FTP is the highest power output that an athlete can produce
in a quasi-steady state for approximately one hour. In order to find this threshold for every
athlete, many different tests are available. [3] Once obtained this number, it is possible to
find different training zones based on the percentage of FTP and specifically designed to
address some specific aspects of the training, such as endurance training (56%-75% of
FTP), lactate threshold training (91%-105% of FTP) or anaerobic training (21%-150% of
FTP) [3]. The use of power meter, in all of this, not only helps in defining FTP, but also in
monitoring performance changes and also to train in the desired training zone, thus boost-
ing performance [3].

Thanks to all the benefits that the use of power meters give, it is not a surprise that cycling
has been an inspiration to also provide mechanical power estimation in other cyclical
sports [2] and in running [4]. This adoption is seen as a big step forward and as reported
by Jaén-Carrillo et al. [4] (p. 1): “[power meter] might also change the way runners com-
pete and train”.

Nevertheless, while this metric, and power meters, are well established in endurance
sports, in the gym context it is available just for those machineries that allow for endurance
training, such as the rowing machine and the bicycle. In all other gym disciplines, where
the athletes perform unconstrained exercises, not only is it not possible to measure power
output, but also there is not a consensus about which metrics to use, and this is particu-
larly true for functional fitness [5].

Functional fitness, of which CrossFit® is the most popular example, is “a training style [or
program] that incorporates a variety of functional movements, performed at high-inten-
sity [...], and designed to improve parameters of general physical fitness [...] and perfor-
mance” [6] (p. 2). In this definition two points are worth mentioning: the first one is the
focus on high-intensity movements. In CrossFit® methodology [7] intensity level is de-
fined by power output, so the role of power in this program is very important. However,
there is a lack of explanation on how to measure it. The second point to mention from the
definition is the explicit prescription of “constantly varied [...] movement” [8] (p. 1) that
makes performance measurement very difficult in this discipline. The main problems here
are two, according to Mangine and Seay [5]:

1. different parts of the training sessions are measured with different methods that out-
put metrics with different units;

2. the same exercise, put in different parts of the training session, can produce different
stresses in the body that can be difficult to quantify using separate metrics for every
training component.

There have been many attempts to try to find some values that can help in estimating
performance [9], [10] or attempts in finding strategies to keep track of the different train-
ing components [11], [12], [13], [14], [15] for overcoming the problems mentioned before
but no one of them seems to really solve the problem.

However, the Level 1 CrossFit Training Guide [16] provides a way to estimate the work-
load and the power for some workouts and, although this is just an approximation, “it is
the first instance where the contribution of individual workout components to the overall
workload were considered” [5] (p. 8).
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A possible way to improve this promising strategy, by overcoming the approximations in
the method used in [16], could be to track athletes” movements using one or more inertial
measurement units (IMUs), as it is actually done in running [4], providing in this way
more precise results.

The aim of this study is, then, to develop and validate a power meter based on IMUs and
specifically designed to be used by functional fitness athletes, to provide coaches and ath-
letes with useful insights into their performance and indication of where to improve.

Before going deeper into the validation study, the necessary theoretical background,
about how to perform power estimation and some technologies that allow to do that, will
be provided.

1.1 Power and power estimation

Mechanical power is defined as “the rate at which the athlete does work or transfer energy
to complete a movement task” [17] (p. 2) and, as mentioned earlier, the interest in this
metric is due to several information that it is possible to draw from it, according to de
Vette et al. [2]:

e it can be used as a performance measure;

e it is an objective way of measuring the external load sustained by an athlete, given
that it takes into account several environmental factors that can influence a training
session or a competition (e.g. wind velocity);

e it canbe used to assess fitness and fatigue in athletes, helping to prevent overtraining
and in periodize training.

Deriving from the definition, power in physics is defined as W/t, where W is the work
performed and t is the time under which the work is done. But the power associated with
a force can also be defined as the cross product F v, where F is the force applied to a
body and v is the velocity at which the body moves due to that force.

From this last definition, considering all the forces acting on an athlete’s body part i and
the velocity under which part i moves, it is possible to derive the power equation for part
iin its translational part by multiplying Newton equation with the velocity:

ZiF,-'Tji:mi'ai'Tji (1)

where F; are all the forces applied to the body segment i, m; is the mass of the segment
iand a; and v; are the related segment linear acceleration and velocity due to the forces.

Similarly, it is possible to write the power equation in its rotational part, due to the
moments applied to the different body parts i of the athlete, using the Euler equation and
multiplying it with the rotational velocity of the body part i

a2 _d = =
ZiMi'wi=E(Ii L W) w; (2)

where M; are all the moments applied to segment i, I; is the inertia of the segment i,
and w; is the related segment angular velocity due to the moments.

As reported by many authors [2], [17], in an athlete we can have four different force (and
corresponding moment) origins, namely joint forces Fj, gravitational forces F,, external
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forces F,, and frictional forces Fy. Summing up the two components in (1) and (2) and
separating the origin of all the different acting forces and moments, we can finally write
the final power equation:

where P; isjoint power, P is kinetic power, Py is frictional power, P, is gravitational
power, and P, is environmental (i.e. external forces and moments) power. This means
that the power generated by an athlete (joint power) is used to generate movement (kinetic
power) and to overcome resistive forces, such as friction, gravity and external forces (fric-
tional, gravitational and environmental powers).

Solving this power equation while treating athlete’s body as a chain of a number of linked
rigid bodies allows for mechanical power estimation [2]. Equation (3) clearly shows that
there are 2 different methods to estimate the mechanical power output of an athlete:
through the calculation of the joint power, determined multiplying the joint torque and
angular velocity, or through the calculation of all the components on the right side of the
equation (3). As reported by van der Kruk et al. [17], both these approaches are suitable
for estimating power output.

To estimate the power of the right side, two approaches are possible [17]:

1. using the instantaneous power and solving the equation (3) for every timeframe (e.g.
using force and velocity derived from a force plate [18]);

2. determining the change of kinetic and potential energy of a system. This approach
was already performed by Garhammer [19] in 1993.

These two methods can provide very good estimations but, considering that usually not
all the terms on the right side are estimated, the joint power approach could be seen as a
“gold standard” in the power calculation. As a consequence, the two methods to evaluate
the right side of equation (3) can lead to a simplified model, neglecting some components.
This model, though, is very useful for a field-based estimation of the power, since both
the joint power calculation and the complete calculations of all the other components in
equation (3) can be very laborious [2].

Indeed, one way to be able to estimate the joint power is to measure, in a laboratory con-
text, all the biomechanics variables through motion capture systems, 3D cameras, multiple
inertial measurement units (IMUs) throughout the whole body (ideally one per each seg-
ment) or cameras paired with neural network models that are able to recreate the 3D
movement of the athlete [20]. But most of the applications of mechanical power require
constant monitoring and in an environment that is the one where the athletes usually per-
form their activities [2]. So, the laboratory environment seems not indicated to be able to
get all the benefit deriving from the adoption of a power meter.

To be able to obtain valid data to be used with the right side of the equation (3), it is re-
quired to use wearable devices, such as IMUs, to measure body segment kinematics [2] in
a way that they do not impair the ability of an athlete to perform his/her usual activity (i.e.
to not have an IMU per segment). Moreover, IMUs can speed up the process of kinetic
and potential energy estimation, instead of performing a very long video analysis, as the
one conducted by Garhammer [19].
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IMUs are small and lightweight devices that are composed of accelerometers, gyroscopes,
and magnetometers [21] and a limited number of IMUs placed on the athlete seems the
best solution to be able to estimate the mechanical power output. With this equipment,
they can collect data about linear acceleration, angular velocity, and local magnetic field
of the segment where they are attached to. The output of an IMU can be used to determine
the kinematics of the segment they are attached to (i.e. its orientation and angular velocity)
but they are useful to estimate external forces as well, making them the perfect
“standalone approach for in-field mechanical power estimations” [2] (p. 2).

Despite the fact that IMUs are small and lightweight, it is not feasible to think that an
athlete can wear a huge number of these sensors during his/her normal activity. For this
reason, it is important to think well about how many sensors to use and where to put them
to obtain a good trade-off between the need for good and reliable data, required by
coaches and sport scientists, and a movement as natural as possible avoiding that IMUs
interfere with athletes” performance.

1.2 IMU placement

There has been a boom in the last decade of researches about the use of IMU sensors in
sports [22] thanks to their characteristics highlighted in the previous paragraph. Among
these studies, many focused on the best placement of IMUs in order to get the best kine-
matics characteristics of the subjects analyzed, for the whole body [23], [24] or specifically
for upper [25] or lower limbs [26]. Despite a review performed in 2010 concluded that the
validity of the IMUs depends on the joint studied and movement performed [27], several
articles have been analyzed to try to find the most promising locations to compute me-
chanical power output. The requirements behind this research were two:

1. to find locations that could represent both the limbs and the trunk, in order to take
into account all the different body parts that can contribute to the total power output;

2. toavoid the usage of too many sensors, otherwise they could impair a natural athletic
performance.

Starting from a systematic review conducted in 2019 by Poitras et al. [23], it was possible
to analyze pros and cons of every joint and the most promising locations were the wrist,
the trunk, the pelvis, and the ankle.

All these locations showed both good validity and reliability. The ankle was also backed
up by the study conducted by Rahn et al. [24], while the wrist position was suggested by
Walmsley et al. [25] as well. Moreover, a recent study, in which IMU sensors were used
in order to assess countermovement jump and squat jump tests, found out that the per-
formance of sensors placed on the chest and on the pelvis is very similar. Despite this, on
average, the chest position demonstrated greater reliability. [28] The location on the chest
can be preferred for two other reasons:

1. the sensor used in this study (Movesense Flash OP174) is also able to monitor heart
rate, so the placement on the chest allows us to obtain this information too;

2. in many sport situations, rules expressly say that IMU must be worn on the torso, as
reported by Mohammadin et al. [29]

So, the locations selected for the present study are the wrist, to monitor the movements of
the upper limbs, the ankle, to monitor the lower limbs, and the chest to monitor the trunk.
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To avoid redundancies and the usage of too many sensors, the IMUs will be placed only
on one upper and one lower limb.

2. Materials and Methods

2.1 Participants

A total of 7 athletes (age: 32.43 + 1.99, height: 173.00 + 11.50 cm, weight: 73.57 + 12.90
kg, experience in functional fitness: 6.71 + 2.75 years) from different Functional Fitness
gyms in the Stockholm area took part in this study. Before starting the study, all of them
signed an informed consent in which there was an explanation of how their data would
have been treated. Moreover, they received an explanation of the study, the movements
to perform and the weights they were supposed to use for each movement.

The following criteria were applied to select the participants:

¢ inclusion criteria: being at least an intermediate functional fitness athlete with at
least 2 years of experience; being an athlete training at least 3 times per week;
being proficient in all the movements that were in the study; having a 1RM (the
maximum weight that can be lift for one repetition) for the snatch of at least 60
kg;

e exclusion criteria: having sustained an injury in the previous 6 months or pre-
senting other pathologies for which performing physical activity was a contrain-
dication.

2.2 Study design and instruments

The present study was structured to be an observational study to determine the va-
lidity of a newly developed IMU-based power meter. The data collection for this study
was conducted in the Promobilia MoveAbility Lab, the biomechanical laboratory at the
Royal Institute of Technology (KTH) in Stockholm, Sweden, during the spring and the
summer 2025. The laboratory is provided with a Motion capture system (Vicon) consisting
of 10 Vicon cameras “Vicon Vantage 16” (16 MP at 120 Hz), 2 video cameras “Vicon Vue”
(720p at 120 Hz) and 4 force plates “AMTI BMS400600”.

For the present study several acquiring technologies and software were used in order
to have robust data to create and validate the power meter:

e The already mentioned Vicon system, sampling at 100 Hz both with Vicon
cameras and video cameras and at 1000 Hz with the force plates. The Vicon
cameras were used to detect reflective markers applied to the athletes, while
the video cameras were used to have a visual recording of the trial. These
two video cameras were placed one in front of the athletes and one on their
left side. The force plates were used to measure ground reaction force (GRF)
during the movements. All these instruments were synchronized between
them;

e 3 IMUs (Movesense Flash OP174, with heart rate recording integrated) sam-
pling at 52 Hz, to record the data to develop the power meter, and connected
via Kaasa app to an iPad to control them;

e Vicon Nexus 2.15, to post-process the data coming from the motion capture
system;
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e OpenSim 4.5, to be able to compute joint moments and displacements from
the motion capture data;

¢ Visual Studio Code and Python 3.10.7 to create the scripts to analyze the IMU
data and create the power meter pipeline.

2.3 Experimental procedure

To ensure optimal data collection with the motion capture system, the system was
turned on one hour before the athletes arrived and a calibration procedure was per-
formed. Then, a protocol was followed during the data collection to provide uniformity
in the process. The protocol consisted in the explanation of the agenda to the athletes, the
collection of their informed consent, some questions regarding their experience in func-
tional fitness and with the movements required for this study, and a warm-up phase. Dur-
ing this phase, the three IMUs to be used to collect data were placed on a flat surface and
then some seconds were recorded in order to perform a static calibration. After the warm-
up, the three IMUs were placed on the chest, on the wrist and on the ankle (Figure 1).

_1 ¥
/ 3

Figure 1: Sensor placement on the athletes. The sensors used in this study are the one indicated with the red arrows (the chest one is

not visible as it is under the sport bra)

67 reflective markers, to be used in combination with the motion capture system,
have also been placed on the subjects following a modified CGM2 schema (see the small
white dots in Figure 1 and Figure Al in Appendix for a representation of the modified
CGM2 schema used).

Once the setup was done, each athlete was asked to perform 5 repetitions of the fol-
lowing functional fitness movements (Figure 2) while being recorded both with the mo-
tion capture system and the IMUs:

e burpees, with 3 different techniques:
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o double step, in which the athlete steps down in the plank position
before the pushup and then steps up after the pushup;
o step up, in which the athlete jumps down in the plank position but
returns from it stepping up;
o jump up, in which the athlete performs a jump both going down in
the plank position and returning from it;
e power clean and push jerks;
e forward lunges (to be performed without any additional weight, with a 20
kg barbell and with a 30 kg barbell);
e power barbell-snatches;
e thrusters.

r Burpee | Thrlier .
I o '%"ﬁ'f K’

Barbell-Snatch Forward-Lunge
& Fw &« 4

ayfe 4
Y

Figure 2: Functional fitness movements performed in the study, taken from crossfit.com

The only movement with a different number of repetitions was the forward lunge
because of the disposition of the force plates on the floor. So, the athletes were asked to
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perform two trials with each external weight, producing 4 valid repetitions per weight.
Only those 4 repetitions were the ones analyzed for the forward lunges.

All the movements, except for burpees and forward lunges, have been performed
with 4 different external weights. Given that our participants had a similar constitution,
the weights that have been chosen were 20, 25, 30 and optionally 35 kg for women and 25,
30, 35 and optionally 37.5 kg for men. We decided to test the same movement with multi-
ple weights in order to be able to study for patterns in the development of power at in-
creasing weight lifted.

These movements have been chosen among the most common ones in functional fit-
ness and taking into consideration that they had to be performed in a laboratory context,
without the possibility to use machinery or other big equipment.

During the data collection, the different groups of movements were randomly per-
formed but keeping the same weight progression, from the lightest to the heaviest. The
burpees, the only group of movement without external weights, and the forward-lunges,
that required a different setup, were always the last movements to be performed for prac-
tical reasons in preparing the setup. Moreover, the progression of the burpees was from
the least demanding to the most demanding: double step, step up, and jump up.

2.4 Data post processing

After the data collection, all the motion capture data were post-processed using the
Vicon Nexus 2.15 software: during this step all the reflective markers were used to recon-
struct a model of each athlete and his/her movements. Then, these models were further
analyzed with the program OpenSim. In here it was possible, through the inverse kine-
matic and inverse dynamic tools, to get the moment and the angular displacement of
every joint. These data were finally used in a Python script to compute angular velocity
and joint power. This power was used to check the validity of the power output computed
with the IMUs. Due to modeling limitations of the ground contact model on OpenSim,
burpees were analyzed only with the force plate data. From the total force recorded (GRF)
it was possible to compute the accelerations sustained by the athlete dividing the force by
the athlete’s mass and removing the gravity. From the acceleration it was then possible to
compute the velocity and then, multiplying the force and the velocity, it was possible to
obtain the power output. To make this force plate power calculation for burpees as close
as possible to the ground truth, the same force plate method was used to compute power
output for all the other movements as well and then a linear regression was performed
with the motion capture data to find the needed correction between the two methods.
Linear regression was chosen as reported also by [30] in their study and as a first way to
assess the two curves.

In order to estimate the power output from the three IMUs attached to the athletes
and build the power meter that was intended to be created in this study, a Python script
was developed. The first step in the script was to use the data recorded during the static
calibration to compute the drifts of the sensors. These drifts were then subtracted from the
recordings of the movements, performing a bias correction. The following steps were the
calculation of the quaternions to estimate the position of each IMU in the 3D space, the
extraction of velocity and displacement data from the acceleration data using the cumu-
lative trapezoid method after having removed the gravity acceleration, and, finally, a fil-
tration of all the data. The filtering step was performed using a low-pass Butterworth filter
of the 3 order at 5 Hz for all the data except for the gyroscope data that were filtered
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using a high-pass Butterworth filter of the 3 order at 0.05 Hz. At this point, the force data
collected with the force plates were imported and filtered with a low-pass Butterworth
filter of the 34 order at 10 Hz. It was then possible to synchronize the IMU and the force
plate data, in order to have a shared timestamp for both. This step allowed for a precise
identification of the single repetitions for every movement from the video recorded dur-
ing the test. And, thanks to the synchronization between the videos and the force plate
data, it was possible to determine the beginning and the end of every movement in all the
recorded data.

After this movement identification it was possible to compute power from the force
plates as described earlier. This step was done to have the force plate power output esti-
mation.

The last step was the calculation of the power output for the segments each IMU
sensor was accounting for: the wrist was considered to stand for the upper limbs and
eventual external weight, the ankle for the lower limbs, and the chest for the trunk. For
this calculation, the two approaches described above have been tried, both the one using
the F-v formula for instantaneous power (later called force approach), and the one using
the difference in mechanical energy (later called energy approach). So, as an example, the
power output computed with the wrist worn IMU with the force approach was the fol-
lowing;:

Pwrist = (marm *2 + mext_weight) * iqu * Vimu (4 )

With the acceleration being the one measured with the IMU applied to the segment
and the velocity being the one obtained by integrating the IMU net acceleration of the
segment. For the energy approach, the power output computed with the wrist worn IMU
was computed with the following formula:

Pwrist
_ A[Z (marm *2+ metheight) * UIZMU + (marm *2+ mextweight) *gx* (hIMU - href)]
B At

(5)

With the velocity being the one obtained by integrating the IMU net acceleration, g
being the gravitational acceleration, h;y; being the displacement at any instant of the
IMU, derived double integrating IMU net acceleration, and h,.; being the IMU displace-

ment in the beginning of the movement.

The reason behind the choice of trying both the formulas (4) and (5) was to see which
one could estimate the power output at the best. For both the approaches, the computation
was performed considering every single instant recorded, and this method allowed for
the calculation of the whole power output curve during each movement. The same com-
putation was performed with the motion capture and the force plate data as well.

These steps have been performed for each of the three sensors applied to the athletes’
body and the results have been summed together to get a final power value for each move-
ment.

In order to assess the accuracy of the power meter with a different number of sensors
used, the power estimation was also performed just considering the chest and ankle sen-
sors, the chest and wrist sensors or just the chest sensors, since these are the most common
combination for athletes that already use a chest strap and/or a smartwatch during their
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training sessions. The chest and ankle combination was chosen to see if it could be bene-
ficial to have a sensor there while tracking the chest.

After having computed all the power output estimations, it was possible to calculate
the mean positive power, the peak positive power and the total positive work, all param-
eters produced during concentric muscular contraction, and the mean negative power,
the peak negative power and the total negative work, the ones produced during eccentric
muscular contraction. These parameters were calculated for each single repetition of each
single movement, to see how the power production varies between repetitions, but also
considering the repetition of the same movement all together, to have a movement level
of analysis.

2.5 Statistical analysis

The final step in this study was to validate the newly developed power meter pipe-
line computing the correlations between the two IMU approaches and the motion capture
data obtained from OpenSim (the gold standard), in order to discover the best overall
approach to the estimation of power in functional fitness. To do this, a Pearson correlation
between the whole power output curves computed with the two IMU approaches, and
the power curve obtained from the motion capture data was calculated for all the move-
ments except for the burpees, as mentioned before. In this case, the correlation was done
between the IMU data and the force plate data. Correlation between the whole curves was
chosen to check not only if the average power output or other parameters are well esti-
mated, but also if the whole power estimation is done correctly and thus also the summary
statistics elaborated from it. According to what was reported by Jimenez-Olmedo et al.
[30]., the results of the correlation were categorized as follows: <0.1 (trivial); 0.1-0.3 (low),
0.3-0.5 (moderate), 0.5-0.7 (high), 0.7-0.9 (very high), 20.9 (almost perfect).

From a comparison of the power curves, it was possible to calculate a linear regres-
sion: this was useful to estimate the relationship between the two curves. The equation
derived from this regression is in the form y = mx + g, in which the slope m should ideally
be 1, to indicate no proportional differences in the two curves, while the intercept g should
be ideally close to 0 to indicate no systematic differences. The results of the linear regres-
sion were then applied to the IMU output to see if the power estimation improved.

To assess accuracy, precision and agreement of the metrics computed with the IMU-
based power meter compared with the gold standard, some statistical evaluations were
conducted: Bland-Altman plots were used to measure agreement [30], Root Mean Squared
Error (RSME) [28], percentage error and Bland-Altman bias were used to assess the accu-
racy, while the precision was assessed using the standard deviation of the percentage er-
ror and with the Bland-Altman 95% Limit of Agreement (LoA) width. All these tests were
performed on both the raw estimation, the one obtained with the power meter, and the
corrected estimation, the one in which the linear correlation equation were used to im-
prove the results.

3. Results

3.1 Correlation results

A total of 147 movements has been recorded and analyzed, considering all the par-
ticipants and the different movements performed.

At a visual inspection, all the four methods of power estimation (motion capture and
force plates as ground truth, IMU with force approach and IMU with energy approach as
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the new solution) provided very similar results both in the shape of the power output
during the different movements but also in the magnitude of the results. An example of
the result for thrusters can be seen below (Figure 3):

Power outpur thruster_25
2000
1000
Q
-1000
000 0.97M 0.972M 0.974M 0.976M 0.978M 0.98M 0.982M
Timestamp (ms)
Force plate =—— IMU force approach —— IMU energy approach - MoCap

Figure 3: example of power output curve comparison between the 4 methods

For each movement, a Pearson correlation and a liner regression were performed.
Table 1 and Table 2 show the Pearson correlation coefficients for, respectively, the force
approach and the energy approach, both compared with the motion capture system (gold
standard) for the 4 different combinations of number of sensors. The two tables only show
the overall results obtained considering all the movements together.

Table 1: overall correlation and linear regression for force approach Table 2: overall correlation and linear regression for energy approach
Pearson correla- Pearson correla-
Number of sensors Approach . . Number of sensors Approach . .
tion coefficient tion coefficient
3 Force 0.908 3 Energy 0.894
2 (chest and ankle) Force 0.863 2 (chest and ankle) Energy 0.847
2 (chest and wrist) Force 0.927 2 (chest and wrist) Energy 0.911
1 Force 0.880 1 Energy 0.864

The Pearson correlation coefficient shows that the force approach produced estima-
tions that correlate between 0.863 and 0.927 with the ones obtained with the motion cap-
ture system. The linear regression showed that there are some proportional differences in
the estimation between the two methods. On the other hand, there is a reduced systematic
difference.

For the energy approach the Pearson values are similar to the one obtained with the
force approach, even though they are always slightly lower being in the range between
0.847 and 0.911. Linear regression showed a smaller proportional difference with the gold
standard, while the intercept is always a bit bigger than in the force approach, indicating
a bigger systematic difference.

3.2 Performance evaluation of force approach and energy approach

To assess the performance of the power meter and of the corrections performed
through the linear equations, RMSE, percentage error and Bland-Altman plot were com-
puted both before and after the correction. These statistical tests were used on 6 specific
metrics computed from the power curves obtained with the IMU-based power meter and
the motion capture system. In order to have a bigger sample, the metrics were computed
for every repetition of every movement, having a total of 607 unique repetitions included
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in the analysis. The 6 metrics, the ones more useful when using a power meter, are the
following: average positive and negative power [19], peak positive and negative power
[31] and total positive and negative work [19]. In Table 3 and Table 4, respectively for force
and energy approach, it is possible to see the overall results of these statistical tests for the
forementioned metrics considering all the movements together and the configuration with
3 sensors. The bias and 95% Limit of Agreement (LoA) computed for the Bland-Altman
plots were reported in the Tables as well.

Table 3: validation test for force approach and using 3 sensors

Metric % error % error corr RMSE raw  RMSE corr Bias raw Bias corr
(ref. value) raw (abs, %) (abs, %) (95% LoA) (95% LoA)
Avg pos P 36.14 + 912 +18.75 214.88 100.68 160.90 -44.37
(483.30 W) 35.94 (44.46%) (20.83%) (-118.25, 440.05) (-221.50, 132.75)
Avgneg P 37.16 + 13.38 + 15.40 194.65 93.51 -145.03 62.16
(-430.61 W) 32.00 (-45.20%) (-21.72%) (-399.49, 109.43) (-74.76, 199.08)
Tot pos W 35.89 + 12.35 + 14.80 375.21 177.76 281.37 -111.68

(771.917]) 3291 (48.61%) (23.03%) (-205.15, 767.89) (-382.75, 159.39)
Totneg W 32.86 + 1179 + 14.67 347.48 178.72 -260.47 112.79
(-800.39]) 30.05 (-43.41%) (-22.33%) (-711.25,190.31) (-158.93, 384.52)
Peak pos P 31.61 + 255 +20.83 595.42 377.53 459.17 -79.30
(1494.84 W) 28.09 (39.83%) (25.26%) (-283.79, 1202.13) (-802.76, 644.15)
Peak neg P 29.19 + 44D 42646 670.46 435.81 -383.85 97.39
(-1356.23 W) 39.22 (-49.44%) (-32.13%) (-1461.28, 693.57) (-735.21, 929.98)

Legend: P = power; W =work; Ref. Value = reference (gold standard) mean for each metric; "Raw” refers to uncorrected IMU estimates; "Corr”

refers to estimates after applying the correction method.

Table 4: validation test for energy approach and using 3 sensors

Maetric % error % error corr RMSE raw  RMSE corr Bias raw Bias corr
(ref. value) raw (abs, %) (abs, %) (95% LoA) (95% LoA)
Avg pos P 31.54 + 972 +19.06 198.06 102.24 135.51 -48.99
(483.30 W) 37.11 (40.98%) (21.16%) (-147.61, 418.63) (-224.89, 126.91)
Avgneg P 29.52 + 1378 + 16.99 163.88 98.44 -112.66 64.33
(-430.61 W) 29.48 (-38.06%) (-22.86%) (-345.94, 120.61) (-81.71, 210.37)
Tot pos W 32.61+ 1116 + 1650 343.03 182.79 248.37 -109.84

(771.91]) 32.99 (44.44%) (23.68%) (-215.36, 712.11) (-396.21, 176.54)
Tot neg W 24.16 + 13.66 + 15.44 286.99 196.36 -191.57 128.83
(-800.39]) 27.71 (-35.86%) (-24.53%) (-610.40, 227.27) (-161.63, 419.28)
Peak pos P 59.02 + 92 40 + 86.31 1721.99 969.88 866.43 254.59
(1494.84 W) 101.42 (115.20%) (64.88%) (-2050.32, 3783.18)  (-1579.56, 2088.93)
Peak neg P 22.64 + 531+ 25.86 594.57 429.38 -290.00 112.46
(-1356.23 W) 37.53 T (-43.84%) (-31.66%) (-1307.33, 727.34) (-699.76, 924.67)

Legend: P = power; W =work; Ref. Value = reference (gold standard) mean for each metric; "Raw” refers to uncorrected IMU estimates; "Corr”

refers to estimates after apvlving the correction method.

Looking at Table 3, all the metrics show an overestimation of their output compared
with the gold standard. The percentage error is between 29.19% and 37.16% and the stand-
ard deviation, thus the variability of the estimation, is quite big. This indicates low



14 of 27

precision and low accuracy of the values provided by the raw estimation. The other sta-
tistical results support the findings, with an absolute percentage RMSE in the range be-
tween 39.83% and 49.44% and with Bland-Altman bias and 95% LoA that are in line with
the percentage error and the standard deviation. After the correction, despite the fact that
now the power meter underestimates the gold standard, all the metrics show improve-
ments: the percentage error is now in the range between -2.55% and -13.38% and the stand-
ard deviation is reduced. This is reflected in the percentage RMSE, where its values are
almost halved after the correction for many of the metrics. The bias is reduced as well with
a smaller 95% LoAs. The corrected estimation shows, thus, both better precision and ac-
curacy.

For the energy approach (Table 4), the situation is almost the same as the one just
seen for the force approach, with the only exception of the peak positive power: with this
metric the energy approach is performing quite badly, with a big systematic error and a
huge random error, showing very poor precision and accuracy. After the correction the
situation improves but it is still not comparable with all the other metrics.

Considering the two Tables together it is possible to see that, except for the peak pos-
itive power, energy approach slightly outperforms the force approach before the correc-
tion, showing a smaller percentage error (34.2% on average for the force approach and
28.1% for energy approach), a smaller RMSE and a smaller bias. The standard deviation
and the 95% LoAs are comparable with the two methods.

After the correction, with nearly all the metrics closer to the gold standard values, the
energy approach slightly underperforms the force approach, showing that the correction
is more effective with the force approach (mean percentage error being -10.2 for force ap-
proach and -10.7% for energy approach, excluding the peak positive power). Nonetheless,
the results are quite similar for all the metrics in both the approaches, except for the peak
positive power (percentage error -2.55% with force approach and 22.40% with energy ap-
proach).

3.2 Performance evaluation of different sensor configurations

In order to check which sensor configuration provides the best results, Table 5 shows
a comparison of the performances of the different configurations for the metrics analyzed
before. Since, from the previous paragraph, the force approach seems the one that pro-
duces slightly better results, the Table only shows the statistics for that approach. Moreo-
ver, given that the correction is more effective in improving the power estimation, the
Table presents a comparison only for the statistical tests computed on the corrected power
output.
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Table 5: comparison of validation test between different sensor configurations

Metric
(ref. value)

Number of sensors

% error corr

RMSE corr (abs, %)

Bias corr (95% LoA)

3 -9.12£18.75 100.68 (20.83%) -44.37 (-221.50, 132.75)
Avg pos P 2 (chest and ankle)  -17.96 +23.17 148.66 (30.76%) -90.89 (-321.42, 139.47)
(483.30 W) 2 (chest and wrist) -9.39 +19.82 105.74 (21.88%) -47.89 (-232.67, 136.90)
1 -17.16 £24.72 150.66 (31.17%) -88.78 (-327.37, 149.81)
3 -13.38 £15.40 93.51 (-21.72%) 62.16 (-74.76, 199.08)
Avgneg P 2 (chest and ankle) -19.25+17.95 124.71 (-28.96%) 89.80 (-79.81, 259.41)
(-430.61 W) 2 (chest and wrist)  -12.54 +15.80 94.53 (-21.95%) 59.38 (-84.78, 203.53)
1 -17.97 +18.43 121.97 (-28.32%) 84.63 (-87.51, 256.77)
3 -12.35 +14.80 177.76 (23.03%) -111.68 (-382.75, 159.39)
Tot pos W 2 (chest and ankle)  -20.16 +19.26 259.17 (33.58%) -179.98 (-545.50, 185.55)
(771.917]) 2 (chest and wrist) ~ -12.00 +16.52 182.09 (23.59%) -107.92 (-395.38, 179.55)
1 -18.87 +21.42 259.71 (33.64%) -169.65 (-555.07, 215.78)
3 -11.79 + 14.67 178.72 (-22.33%) 112.79 (-158.93, 384.52)
Totneg W 2 (chest and ankle)  -18.93 +19.04 256.83 (-32.09%) 179.96 (-179.17, 539.10)
(-800.39]) 2 (chest and wrist) ~ -11.36 +15.70 179.27 (-22.40%) 108.45 (-171.33, 388.23)
1 -17.76 + 20.64 256.23 (-32.01%) 170.12 (-205.44, 545.67)
3 -2.55 +20.83 377.53 (25.26%) -79.30 (-802.76, 644.15)
Peak pos P 2 (chest and ankle) -3.62£25.35 444 .44 (29.73%) -98.14 (-947.75, 751.46)
(1494.84 W) 2 (chest and wrist) 1.66 +19.24 320.08 (21.41%) -10.35 (-637.38, 616.68)
1 -0.59 +23.19 377.99 (25.29%) -46.07 (-781.41, 689.27)
3 -4.42 +26.46 435.81 (-32.13%) 97.39 (-735.21, 929.98)
Peakneg P 2 (chest and ankle) 2.64 +34.93 487.57 (-35.95%) 21.82 (-932.87, 976.51)
(-1356.23 W) 2 (chest and wrist) -0.38 +28.21 427.48 (-31.52%) 48.33 (-784.16, 880.82)
1 5.72 + 34.99 474.22 (-24.97%) -19.56 (-948.23, 909.11)

Legend: P = power; W = work; Ref. Value = reference (gold standard) mean for each metric; "Raw” refers to uncorrected IMU

estimates; "Corr” refers to estimates after applying the correction method.

For all the metrics but the peak powers, it is possible to see that the performances can
be divided into two groups: the first group is the configuration with 3 sensors and the one
with the 2 sensors at the chest and the wrist, while the second groups has the configuration
with 2 sensors at the chest and at the ankle and the single sensor at the chest. Both the
configuration in the first group have an absolute percentage RMSE between 20.83% and
23.59%, excluding the peak powers and both the configurations in the second group have
an absolute percentage RMSE between 28.32% and 33.64%, excluding the peak powers.
Thus, among these two groups there is a difference around 8%-10% in the percentage
RMSE, with the first one providing better estimations. Comparing the configuration in the
first group, the 3-sensor configuration and the one with 2 sensors applied to chest and
wrist, the latter provides the best results, with a mean percentage error of -7.3% against -
8.9% of the first.

The only metrics that don't fit in the two groups division are the peak powers: their
performances are more mixed between the different configurations, with the single sensor
providing the best estimation for the peak negative power (systematic error -19.56 W and
percentage RMSE -24.97%) while the 2 sensors worn at the chest and at the wrist provide
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the best estimation for the peak positive power (systematic error -10.35 W and percentage
RMSE 21.41%).

4. Discussion

This study aimed to analyze the concurrent validity of a newly developed IMU-based
power meter when compared to a combination of a motion capture system and force
plates for the estimation of power output in functional fitness athletes. The power meter
has been designed to be based on 3 IMUs, one worn at chest, one at wrist and one at ankle.
Two algorithms with different approaches have been developed to estimate the power
output using the IMU data as input. The first algorithm is based on force approach, in
which power (P) is estimated by multiplying force (F) and velocity (v) according to the
formula P = F-v (anexample usage can be seen in formula (4) in the material and meth-
ods section); the second algorithm is based on energy approach, in which power is derived
from a change in the mechanical energy of the athlete over time (an example usage can be
seen in formula (5) in the material and methods section).

At a visual inspection, all the four methods of power estimation (motion capture and
force plates as ground truth, IMU with force approach and IMU with energy approach as
the new solution) provided very similar results both in the shape of the power output
during the different movements but also in the magnitude of the results.

To confirm and quantify these similarities and to be able to validate the IMU-based
power meter, some statistical analyses were conducted. Thanks to these analyses, it was
possible to determine the best approach (force or energy) to estimate power output and
the best combination of sensors. Indeed, the configuration with 3 IMUs can be suitable for
a laboratory but, in a gym, it is difficult that athletes have so many sensors. They usually
have a sensor applied on the chest and, sometimes, a smartwatch that can help. Thus, an
investigation about different number of sensors used and worn in different locations has
been made to assess the reliability of their results. The possible alternatives to the 3 sensors
configuration were two sensors (worn at the chest and the wrist or, in another configura-
tion, at the chest and the ankle) or just one sensor (placed on the chest).

The first analysis conducted to validate the power meter was the calculation of Pear-
son correlation coefficient, to check if the estimated power and the one computed with the
gold standard were well correlated. All the combinations of number of sensors and ap-
proaches used for the power estimation showed a very high to almost perfect correlation
(0.847-0.927). The results obtained are in line or slightly better than the ones obtained by
Jimenez-Olmedo et al. [30], who reported a correlation between IMU and motion capture
of 0.847 for IMU worn at the pelvis level. Other studies, investigating the correlation of
IMU attached to the torso, found values that were ranging from 0.72 to 0.95. [32], [33], [34].
The best correlation (0.927) was produced with 2 sensors placed at the chest and at the
wrist and using the force approach. On the other hand, the lowest correlation (0.847) was
obtained with 2 sensors worn at the chest and at the ankle and using the energy approach.

There can be two different factors that can affect the estimation with the configura-
tion with 2 sensors placed at the chest and the ankle with energy approach. The first one
is that the energy approach estimation is a little bit more flattened compared to the one
produced by the force approach. This fact can be seen both visually inspecting the curves,
where the energy estimation is always smaller than the force one, but also looking at the
metrics estimated from the power output curve. Except for the peak positive power, all
the other metrics present smaller values compared to the ones estimated with the force
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approach, considering the raw estimation obtained by the power meter, i.e. without cor-
recting the estimation with the linear equation. Thus, a slightly more flattened curve can
correlate slightly worse with the gold standard. A second factor can be connected with the
sensor configuration: indeed, many movements were involving the upper limbs and the
absence of a sensor dedicated to the arms can be a problem in the estimation of the power
produced in that part of the body. Even more so if one thinks that the arms were moving
external weights, thus producing a considerable amount of power. This, though, does not
explain why the worse configuration is the one with 2 sensors (chest and ankle) and not
the one with just one sensor: the most likely reason behind this, and also behind the fact
that 2 sensors (chest and wrist) are better than 3, is that the sensor placed at the ankle
produces a misleading power output instead of valuable one, thus making slightly worse
the final power output estimation when the ankle is monitored. This aligns with a finding
reported by Tan et al. [35] that a single misplaced IMU can reduce the ground reaction
force estimation accuracy by up to 1.1%. Considering that, with IMUs, the force in is esti-
mated from the acceleration, it is easy to understand how this accuracy reduction can af-
fect the power estimation as well.

A second analysis of the power meter was meant for measuring its accuracy, preci-
sion and agreement with the data obtained with the motion capture system. Confronting
the results of percentage error, RMSE, bias and 95% LoAs both for the force approach and
the energy approach, it is possible to note an interesting thing: when computing those
statistical tests on the raw power output estimation, i.e. on the estimation given by the
power meter without the correction of the linear regression equation, the energy approach
provides better outcomes in 5 of the 6 metrics analyzed, with the exception of the peak
positive power. Indeed, the absolute percentage error with energy approach for these five
metrics is in the range 22.64%-32.61%, while for the same metrics the force approach esti-
mation is in the range 29.19%-37.16%. For the peak positive power, on the other hand, the
force approach gives much better estimations, with the percentage error for the force ap-
proach being 31.61% and 59.02% for the energy approach. The other statistical tests show
similar results. No other studies were found to test power estimation with the same move-
ments as the present one, so the only comparison can be made with studies estimating the
power output during a countermovement jump test. Rantalainen et al. [33] reported to
have a percentage error of 25.8% between mean concentric power estimated with an IMU
compared with power estimated with a force plate during countermovement jumps. The
present study is performing a bit worse, 36.14% with the force approach and 31.54% with
the energy approach. However, as already mentioned, the movements analyzed are dif-
ferent, so a direct comparison is difficult.

Applying the linear correction the power estimation improves for all the metrics us-
ing the force approach (absolute percentage error in the range 2.55%-13.38%) and for al-
most all the metrics using the energy approach (absolute percentage error in the range
5.31%-22.40%). The variability, expressed by the standard deviation and by the 95% LoAs,
is also reduced nearly for all the metrics. After the correction the force approach appears
to be slightly better than the energy approach.

The only metric that improves but is still not in line with all the other is the positive
peak power estimated using the energy approach. To understand why this happens it is
useful to check the Bland-Altman plots. In Figure 4 it is possible to see the Bland-Altman
plots for the peak positive power in the configuration with the 3 sensors and estimated
using energy approach.
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Figure 4: Bland-Altman plot for peak positive power estimated with energy approach before (a) and after the correction (b)

In Figure 5 the same metric is represented for the same configuration of sensors but
showing the result of the force approach.
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Figure 5: Bland-Altman plot for peak positive power estimated with force approach before (a) and after the correction (b)

It is evident that, in the energy approach there are some values that have a trend
similar to the equation y = x and that are influencing the results a lot.

To understand where the problem is, Table 7 shows the statistical results of peak
positive power divided per single movement.
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Table 7: peak positive power with energy approach analysis

Movement % error % error RMSE raw RMSE corr Bias raw Bias corr
(ref. value) raw corr (abs, %) (abs, %) (95% LoA) (95% LoA)
Burpee 124.99 + 38.39 = 3713.15 1805.38 2413.13 730.06
(1996.11 W) 149.33 88.24 (186.02%) (90.44%) (-3069.83, 7932.09)  (-2506.27, 3966.39)
Clean and jerk 29.62 = -5.91 + 586.78 319.24 426.11 -97.94
(1500.06 W) 29.92 21.44 (39.12%) (21.28%) (-364.57, 1216.80) (-693.49, 497.60)
Lunge 89.66 + 94.18 + 1485.79 1524.55 649.01 683.24
(793.35 W) 183.05 186.74 (187.28%) (192.17%)  (-1970.61, 3268.63)  (-1988.00, 3354.48)
Snatch 53.33 = 512+ 777.56 236.87 720.24 52.66
(1412.26 W) 24.90 16.93 (55.06%) (16.77%) (145.92, 1294.55) (-399.99, 505.31)
Thruster 25.55 + 12.10 + 441.53 253.26 398.34 185.24
(1616.09 W) 15.40 13.17 (27.32%) (15.67%) (25.05, 771.64) (-153.25, 523.74)

Legend: Ref. Value = reference (gold standard) mean for each movement; "Raw” refers to uncorrected IMU estimates; “Corr” refers to estimates

after applying the correction method.

IMU - MoCap

IMU - MoCap

From the Table above it is evident that the worst results are obtained with burpees
and lunges, while the other movements show performances that are in line with the gen-

eral results of the other metrics seen above. Indeed, the percentage RMSE is in the range
15.65%-21.28% for the clean and jerk, snatches and thrusters, and this is comparable with
the percentage RMSE of the same metric but estimated with the force approach on all the
movements (25.26%). Plotting Blend-Altman plots for all the movements confirms this
finding (Figure 6 for the plots of burpees and lunges, Figure 7 for the plots of the other

movements).
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Figure 6: Bland-Altman plots for peak positive power estimated with energy approach for burpees and lunges. The

first row shows the results before correction, the second row after the correction
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Figure 7: Bland-Altman plots for peak positive power estimated with energy approach for clean and jerks, snatches and thrusters. The first row

shows the results before correction, the second row after the correction

The problem in estimating peak positive power with burpees and lunges is due to
the fact that, in order to minimize the drifting of the acceleration during the recordings,
thus reducing the possible estimation error due to double integration of the signal over
time to compute displacement, several corrections were used during the data processing.
These were the static calibration, the removal of the offset during the integration process
and the reinitialization of the reference height and mechanical energy for computing the
displacement at the beginning of every movement and every repetition. This last point is
the one that is more likely to cause the problem. Indeed, this reinitialization paired with
the fact that burpees and lunges were the only movements where the transition between
a repetition and the other didn’t present an instant where the mechanical energy could be
assumed near zero, made that, at the beginning of some repetitions in those two move-
ments, some jumps in the mechanical energy could have happened. And these jumps in
mechanical energy are the ones that, then, produce spikes in the power output that can
cause this poor performance in the estimation of the peak positive power.

To try to solve this problem a solution can be to avoid the reinitialization of reference
height and mechanical energy in the middle of those two movements, trying to reduce the
drift that might eventually arise in other ways. Another possibility is to implement a strat-
egy in the searching of peaks that detect possible outliers and exclude them from the pos-
sible peak candidates.

Finally, speaking of the best configuration of sensors to estimate the power output,
from the data collected it appears that the 3 sensors and the 2 sensors placed at the chest
and at the wrist are quite close in many metrics, with the configuration with two sensors
that globally outperform the other. Indeed, it has a mean percentage error of -7.3% against
the -8.9% of the version with 3 sensors. This value, despite being significantly different
from the gold standard (p < 0.001), can still be acceptable as first estimation if the people
that are going to use this device are aware of it. The pros deriving from being able to assess
power output from athletes, even with a bit of underestimation, are bigger than the risks
deriving from a lack of assessment or an assessment with a tool that provides wrong
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results, especially if the underestimation is taken into account. Indeed, the risks deriving
from a lack of performance assessment or from wrong power output estimations are that
coaches and athletes take decisions for some training sessions that could be harmful to
athletes resulting in an injury or, less severe, in a reduction of performance. This is also
highlighted by Gabbett [36], that shows that non-contact injuries are due to inappropriate
training programs. This can be seen both as an ethical and social problem, as the athletes
need to suspend training, spend money on healthcare to recover from the injury, without
considering their physical and psychological suffering.

So, with this study it was possible to bridge the existing gap between endurance
sports and functional fitness in the way the performances of the athletes are measured. It
is now possible to compare different parts of the same training program to have a general
estimation of the load sustained by the athlete. Moreover, this allows comparison with
other sports as well, showing how much power is developed while doing a clean and jerk
or a burpee as well as how much of it is developed while doing an all-out sprint in a road
cycling race or the effort required to climb a famous mountain in one of the cycling grand
tours’ stages. For example, Sanders et al. [37] reported that the average power output of
20 male professional cyclists analyzed in their races for 4 years (mean duration 285 min)
was 216 W (3.0 W/kg), while the same outcome measured for 10 professional female cy-
clists on a mean duration of 194 min was 167 W (2.8 W/kg). Considering a more intense
and shorter effort, Vogt et al. [38] reported that the average power output of six male
professional cyclists during an uphill time trial stage was 392 W (5.5 W/kg). These data
can be confronted with the results of this study, in which all the athletes expressed an
average power of 483.30 W (6.57 W/kg) considering all the movements they performed.
So, the power values of functional fitness athletes can be even higher than the ones ex-
pressed by professional cyclists, even though it must be taken into consideration the much
shorter duration of the analyzed movements in this study and the fact that functional fit-
ness athletes develop power with the whole body while the cyclists do that mostly with
their legs.

4.1 Limitations

Despite all the efforts in trying to carry out a study with as little biases as possible,
some limitations are still affecting the present study. The first limitation is the reduced
dimension of the sample analyzed, so it is difficult to draw statistically valid conclusions
and also to generalize the findings to a broader group of athletes. Moreover, the fact that
the data collection was held in a laboratory limited the number of available exercises and
of the available external weight that could be used. Another thing to consider is that with
all the markers and the IMUs placed on athletes body and the fact that they had to perform
all the movements on the force plates, they couldn’t perform their usual techniques for
the movements we had in our test, hence the power output could be not reflective of the
real power expressed in a gym context. The researchers tried to limit the influence of this
limitation as much as possible, like placing soft markers where athletes were making con-
tact with the barbell to allow them to perform as if there were no markers.

4.2 Future directions

As already mentioned earlier, trying to minimize the drift of the energy method with-
out creating spikes in the power estimation could improve the energy approach a lot. Sev-
eral strategies can be tried here: one strategy could be to compute repetition power start-
ing from the whole movement power estimation. In this way, the signal is continuous,
thus avoiding the spikes at the beginning of the repetitions. Another possibility could be
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the implementation of an outlier detection step that removes the artificial spikes before
the identification of the peak power.

In the future it could also be interesting to expand the sample to see if the results
discussed in this paper are confirmed. Moreover, it would be interesting to find a good
ground truth, instead of the motion capture system, to be used directly in the gyms, where
the athletes can be tested on many other movements and with the possibility of perform-
ing the gestures at their best, without interference due to laboratory constraints. This
could help a lot in generalizing the results and capturing data that are closer to the ones
produced during the real potential use of such a device.

5. Conclusion

The aim of this work was to develop and validate a power meter that can be used by
functional fitness athletes. To build a device that can be reliable without interfering with
athletes’ gestures, the idea was to use some inertial measurement units (IMUs) applied to
the chest, the wrist and the ankle of the athletes. This configuration was chosen after re-
viewing literature for the best IMU position on the body and with the idea that a sensor
applied to the trunk, one on the upper limb and one on the lower limb were the best and
most comprehensive configuration for power estimation.

To validate the power meter some functional fitness movements were performed in
a biomechanic laboratory while the athletes were wearing the three IMUs and reflective
markers to be used in combination with a motion capture system (gold standard). The
data collected by the IMUs were then used to estimate power output and this was com-
pared with the power output calculated with the data collected by the gold standard. The
IMU-based power meter was built with two different approaches that followed by the
literature analysis conducted before the beginning of the study: the first approach used
was the force approach, in which power (P) is estimated multiplying force (F) and velocity
(v) according to the formula P = F - v; the second approach was the energy approach, in
which the power was derived from a change in the mechanical energy of the athlete.

The results of the validation study suggested that the force approach provided the
best correlation with the motion capture and, after the correction of the power output es-
timation with the linear equation found with a linear regression, the force approach was
the one providing closer estimations to the gold standard, despite the difference with the
gold standard was still statistically significant. When investigating the performance of dif-
ferent configurations of sensors, the configuration with just one sensor applied to the chest
and one applied to the wrist showed the best overall results, even if it was quite close to
the configuration with 3 sensors.

6. Patents

This work resulted in a patent claim in the US for the company WodMotions.
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Appendix A
Appendix Al

Picture showing the disposition of the 67 reflective markers used in this study, ac-
cording to a modified CGM 2 model
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