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Abstract

This project develops a novel approach to analysis and understanding of tennis shot
and serve performance, with the help of machine learning for digital coaching purposes.
Using the PlayReplay system, two models are developed to generate shot return
probabilities and quantified serve quality. Shot return probability is used to provide
insight into the decisiveness of a shot and its effectiveness. Built on that, serve quality
is measured as the impact of such serves on subsequent shots, allowing for a more
comprehensive understanding of serve quality. Key metrics for both shots and serves
are computed on multiple samples obtained by rigorous data collection in other to
maximize models’ performance. Ultimately, this mentioned process allows the
development of a final tool that offers specific feature analysis of a given serve,
providing a suggestion on performance improvement of serve. The results show the
potential of machine learning and data driven techniques to be implemented in real

world scenarios and be used by players and coaches to improve player performance.

Sammanfattning

Detta projekt utvecklar ett nytt tillvigagangssétt for analys och férstaelse av tennisslag
och serveprestationer, med hjalp av maskininlarning for digitala coachningsandamal.
Med hjalp av PlayReplay-systemet utvecklas tva modeller for att generera
skottretursannolikheter och kvantifierad servekvalitet. Sannolikhet for skottretur
anvands for att ge insikt i ett skotts beslutsamhet och dess effektivitet. Baserad pa det
maéts servekvaliteten som effekten av sadana servar pa efterfoljande skott, vilket
mojliggér en mer omfattande forstaelse av servens kvalitet. Nyckelmatt for bade skott
och servar beriknas pa flera exempel som erhallits genom noggrann datainsamling i
andra for att maximera modellernas prestanda. I slutdndan tilliter den héar ndmnda
processen utvecklingen av ett sista verktyg som erbjuder specifik funktionsanalys av en
given serve, vilket ger ett forslag pa prestandaforbattring av serven. Resultaten visar
potentialen hos maskininlarning och datadrivna tekniker att implementeras i verkliga

scenarier och anvéndas av spelare och trianare for att forbattra spelarens prestation.
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1. Introduction

Tennis, as a sport, has continually evolved with advancements in technology. Among
these innovations, the integration of camera-based systems on tennis courts has
revolutionized the way the game is played, officiated, and analyzed, a well-known
example is the addition of the Hawkeye system to the professional tour in 2006 [1].
These systems provide unprecedented levels of accuracy in ball tracking, player
movement analysis, and statistical data generation. One such system, developed by
PlayReplay [2], captures intricate details of a match, including ball trajectory, speed,

spin, player positioning and several more.

Despite the variety of data these systems produce, there remains a critical need for a
comprehensive analysis that translates this raw information into actionable insights for
players and coaches on a commercial level. Specifically, the assessment and
enhancement of a player's shots, present an opportunity for in-depth study and
improvement. For instance, a 2020 study found tennis coaches spend their majority of
work time in task that does not involve player coaching [3], Technologies as described

could help with the requirement for man hours.

The primary aim of this project is to evaluate and analyze the performance of the
tennis serve. Unlike other shots in tennis, the serve does not rely on the opponent's
output but rather depends solely on one's own technique and skill. Given this unique
nature of the serve, it becomes crucial to establish a method for determining the quality

of a player's serve accurately.



The term “ace” serves as the ultimate classification for a well-executed serve. An “ace”
is a serve that ends the point immediately, leaving the opponent unable to even reach
the ball, thereby awarding the point to the server outright. While aces are
straightforward to identify and serve as a significant metric for evaluating the
performance of professional players, they present a more complex challenge when it

comes to club-level tennis.

At the club level, aces are not as common, making them insufficient as the sole criterion
for evaluating serve quality. This is because serves that do not result in aces can still
be considered effective and valuable. Such serves can force the opponent to make a
mistake or produce a weak return, thereby giving the server an advantage in the
subsequent shot. Thus, it becomes essential to consider other factors and metrics to
comprehensively assess the quality and effectiveness of serves beyond just the

occurrence of aces.

1.1. Goals and Objectives

The goal of this degree project is twofold. Firstly, it seeks to harness the data output
from the PlayReplay system to construct a robust model that evaluates a player's shot
performance. This model analyzes key metrics such as ball speed, spin rate, placement
accuracy, trajectory analysis and more, aiming to assign a quantifiable score to the
shot. Such a scoring mechanism intends to provide a comprehensive view of the shot’s
effectiveness, going beyond traditional statistics to offer a more nuanced evaluation. A
similar system has been developed for professional level players by Tennis Insights,
part of Tennis Data Innovations [4], to show tennis enthusiasts shot performance by
their favorite players, however, there are no tools available for digital coaching at
amateur level, as Tennis Insights focusses on generate statistics of professional level

players for the sole purpose of visualization at consumer level.

For this last reason, the project attempts to utilize the generated shot scores to offer
tailored recommendations for improvement to the players. By employing data-driven
insights, this aspect of the research aims to provide actionable guidance, specific to

individual players, to enhance their shot making capabilities.

Through the development of this scoring model and subsequent improvement

suggestions, the project aspires to bridge the gap between raw data and practical



utility, catering to the needs of both players and coaches. By providing quantifiable
assessments and guidance derived from the data output of the PlayReplay system, this
research proposes a contribute to the enhancement of player performance and the

understanding of shot dynamics in the field of tennis.

1.2. Structure of the Thesis.

This thesis report will be structured the following way: (to be exactly defined)

- Background: The section discusses the technological advancements in tennis,
particularly focusing on camera-based systems like PlayReplay that track ball
trajectories and player movements. It examines how these technologies are
transforming tennis by providing precise data for performance analysis,
highlighting the shift from traditional coaching methods to more data-driven
approaches. The background also touches on the limitations of current datasets
available for tennis analysis and the need for more detailed data to fully
understand the impact of serves on match outcomes.

- Methodology: refers to the use of the PlayReplay system to generate a unique
dataset for analyzing tennis serves. It describes how the system captures 3D
data using multiple cameras positioned around the court, and how this data is
processed to track player positions and ball trajectories. The section also details
the creation of two machine learning models, a logistic regression model for
predicting shot return probability and a gradient boosting regressor model for
scoring serve quality, used to evaluate serve effectiveness.

- Results: in this section, the results from the machine learning models are
presented. The shot return probability model is evaluated for accuracy, revealing
that serve speed, placement, and spin are critical factors influencing serve
success. The serve quality model is analyzed for its performance, with discussions
on the impact of dataset size on model accuracy. The results emphasize the
effectiveness of these models in providing a more objective analysis of tennis
serves compared to traditional methods.

- Discussion: interprets the results, focusing on the implications for tennis
coaching and player development. It emphasizes the potential of data-driven
insights to enhance training by offering personalized feedback based on specific

serve characteristics. The section also explains the significance of this study in



sports technology, suggesting that the methodologies used could be adapted to
other sports for similar performance evaluations.

Conclusions: lastly, the report concludes by summarizing the key findings and
their implications. It reiterates the value of using machine learning and detailed
data analysis in understanding and improving tennis serve performance. The
conclusion also highlights the potential for future research to expand on this
work, exploring other aspects of tennis or applying similar techniques to different

sports.



2. Background

This chapter include background of the project. Firstly, there is a need to assess the
current technological landscape regarding the utilization of camera or sensor-based
systems for tennis analysis, while also exploring their applicability to the sport. It also
includes investigation into coaching methodologies emerged, focusing on whether
coaches rely on tangible data or solely on empirical knowledge to instruct players the
proper shot execution. Lastly, the availability of tennis datasets, particularly at point
or shot level, is examined to ascertain their potential contribution to understanding

the significance of serving in determining match outcomes.

Among the most notable advancements in professional sports technology is the
Hawkeye system [1], initially developed for digital line calling. Evolving beyond its
original porpoise, the system now facilitates real-time ball tracking and line calling.
However, widespread adoption is hindered by stringent sensor requirements, limiting
accessibility for many clubs. To address this challenge, ongoing developments such as
PlayReplay [2], a camera-based system located at the net, are underway. Capable of
ball tracking, line calling, shot recognition, and more, such innovations aim to

democratize access to advanced analytical tools within tennis.

Historically, coaching techniques have relied heavily on non-written knowledge.
However, with technological advancements, biomechanical studies, and performance
analysis, a wealth of empirical data is now available. For instance, research conducted
by the College of Sports and Exercise Science aimed to discern disparities in serve

technique models between expert and novice coaches [5]. Similarly, studies from the



Universidad Complutense de Madrid have sought to develop models for providing
feedback on serve quality based on questions answer by the performing player [6], and
research by the Technical University of Munich aimed to understand serve placement

dynamics and distribution [7].

While publicly available datasets for shot performance analysis are limited, notable
exceptions such as The Match Charting Project offer valuable resources. Data from

over 13,000 matches and nearly 8,000,000 shots recorded from professional players.

2.1. Tennis basics and terminology.

It is important to understand the basics of the sport of tennis and get familiar with the
tennis terminology used in this report in order to follow the ideas presented in the

following sections.

Tennis, as close as we know it today, is a sport racket invented in England at around
the 16" Century [8]. Modern singles tennis is defined by the Cambridge dictionary as
“a game played between two or four people on a special playing area that involves

hitting a small ball across a central net using a racket” [9].

The mentioned special playing area is called the court, and it is divided in two sides,
one for each player or pair of players; rectilinear lines define the court shape and size,
an image of a tennis court and its dimensions can be found in Appendix A. Players can
hit the ball before or after it has bounced once on their side of the court, if the ball
first bounce occurs outside of the surface delimited by the lines the point is over,
“point” being defined as the sequence of hits that bounce into the defined bounce area

or that are hit before the ball hits the ground.

The action of hitting the ball towards the other side is named “shot” and it can by
classified depending on its type:

- Serve: first shot of every point, required to be executed behind the farthest line
of the bouncing area to the net, called the baseline. Players self-feed the ball in
the air before hitting it and the bounce must land in a subsection of the bounce
area representing approximately one fourth of a whole court side. Modern

technique often requires the player to hit the ball over the head, and although



not mandatory, this type of serve is analyzed in this project as it represents
most of the serves performed at almost any level of the sport [10].

- Ground strokes: shots other than the serve which are hit after the ball has
bounced. They can be divided into forehands and backhands: when the ball is
hit on the side of the dominant or racket holding hand, it is considered a
forehand, if hit on the opposite side it is considered a backhand.

- Volleys: shots other than the serve which are hit before the ball bounces, they
as well can be classified as forehands or backhand.

- Returns: groundstrokes executed as the next shot after a serve, always hit after
the ball has bounced.

In order to simplify the following reading of this report serves are referred to as “serves”
themselves, and groundstrokes, including returns, and volleys are simplified as “shots”,

as only the differentiation of serves against not serve shots is needed.

2.2. Machine learning implementation.

Machine learning is a key component of a great quantity of technology currently
developed and used. A variety of fields benefit from it and sports in one of them. The
applications of machine learning in sports are immensely diverse, from result prediction
[11] to injury prevention [12], athletes and teams from all types of disciplines take
advantage of the current technology available to improve different aspects of their
presence in the sport. Performance analysis and improvement being one of the biggest

fields on which machine learning is relied on [13].

Formula 1, for example, known as one of the most technologically advanced sports,
highly rely in artificial intelligence and machine learning to help teams make decisions
in real live. An example of this technology is RaceWatch, racing performance analysis
tool part of Catapult, company dedicated to sports performance analysis [14]. But not

so technology focused sports also use machine learning.

IBM, company whose employee Arthur Samuel coined the term machine learning,
defines it as “a branch of artificial intelligence (AI) and computer science that focuses
on the using data and algorithms to enable Al to imitate the way that humans learn,
gradually improving its accuracy” [15]. The benefit of machine learning is that, as it is

performed by computers, the amount of data they are capable of processing is



immensely bigger, making it key to solve problems humans are unable to solve due to

complexity or size, as well as automatizing humans can regularly execute.

But there is a big array of different problems that can be solved by machine learning,
and for that reason a variety of models exist. Each model has a distinct internal
functioning structure in order to accommodate for the data used to solve a specific

problem [16] [17].

This project relies on the use of machine learning to process high amounts of data to
generate valuable and simplified outcomes that allow for a simpler understanding of

the complexity of the tennis game. Two models are used for the current task:

- Logistic Regression model: logistic regression is one of the most used machine
learning algorithms. Supervised algorithm widely used for binary classification
tasks. Given a sample described as a set of features represented with values, a
linear combination of said values is transformed into a probability of the sample
to belong to either one of two defined categories, outputting a final value
between 0 and 1 [18]. In the scope of this project, logistic regression is used to
predict the probability of a tennis shot to be returned, furtherly explain in the
following sections.

- Gradient Boost Regressor model: gradient boosting regression is a machine
learning technique that constructs a robust predictive model by adding multiple
weak models, typically decision trees. The process begins with an initial simple
model and iteratively enhances it by training successive models to predict the
residuals or errors of the current model. Each subsequent model addresses the
errors of the one before, and this iterative improvement continues until the
model's predictions achieve high accuracy. This methodology results in a
powerful model by systematically correcting the inaccuracies of earlier iterations
[19]. The result is a value representing the position of a sample in a given scale.
A gradient boost regression model is implemented here to act as a score
generator for a specific serve, depending on its characteristics, presented in next

sections.



3. Methodology

3.1. PlayReplay System

To conduct a thorough analysis of the tennis serve, it is essential to have reliable data
collection that the digital coach model can rely on. Unfortunately, for this specific
project, there are no publicly available databases that meet the required criteria. It is
challenging to find databases where shots are captured and measured using the same
metrics as those used in this study, which will be discussed in more detail in the

following sections of the methodology description.

There is one database worth mentioning, although it is not directly applicable to this
project's development: The Match Charting Project [20]. This public and up-to-date
database contains information from over 13,000 matches, with nearly 8,000,000 shots
recorded. However, it does not offer the level of precision needed at the individual shot

level for this analysis.

This lack of available datasets makes it imperative to create a specific, own, and unique

dataset for the purpose of this project which is generated by the Play Replay system.

PlayReplay [2] is a Stockholm based company which develops a line calling system for
club tennis courts that allows players not only to check and challenge calls (whether a
shot was in or out), but also offers comprehensive tennis statistics for players from all

levels.

Their system is based on the installation of four (or eight) cameras, two (or four) facing

each side of the court, located on the top of the net posts. The cameras capture a wide



image of the court, the ball, and the players, at a high sample rate. As two cameras
are focusing on each side of the court, a 3D space can be triangulated from the images
captured. Then, with the use of image analysis and computer vision algorithms both

players position and ball trajectory are computed and tracked at different sample rates.

The system is also able to detect shots, shot types and shot outcome (in, net, out wide
or out deep) and the position of the ball in key moments of the shot such as hitting

instant, net crossing, and bounce.

Data outputted from the system is normally shown in an app, but in this case, as more
precise information is needed compared to the one generated by the commercial
application of the system, raw data regarding 3-dimensional ball and player position is
also used, thanks to a modification of the standard firmware. The PlayReplay court

layout and coordinate system is shown in Appendix B.

1. PlayReplay system: camera placement

3.2. Data collection

Data collections consist in playing sessions with full points, played in two venues: Salk
Tennisklubb, located in Bromma, Stockholm; and Good to Great Tennis Academy, in

Danderyd, Stockholm.

Four different males, right-handed players participated in the sessions throughout a
67-day period. Every player had several years of playing experience with an

intermediate to advanced level.
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Playing sessions are recorded by the PlayReplay system and videotaped separately, as
a validation method and a helping tool in case of needed cleanup of the data from the
PlayReplay system. The sensors from the system are capable of capturing ball positions
throughout the entirety of gameplay, alongside tags, timestamps, and other relevant

shot information.

Sessions follow a structured format, commencing with a warm-up period before
transitioning into points, started with serves. Each player serves for six consecutive
points, to ensure similar point distribution between players, while also mitigating
fatigue for the serving player. Simultaneously, this setup provides sufficient continuity
for players to establish comfort with their serve motion. At the time of writing this
report, seven sessions have been recorded, each lasting for one hour and comprising 451

serves with their corresponding points (excluding double faults).

Data is then uploaded to a database in the form of text files with all ball and player

positions as well as timestamps for the shots and other additional information.

3.3. Two model approach

As previously mentioned, the primary objective of this project is to evaluate and
analyze the performance of the tennis serve. Unlike other shots in tennis, the serve does
not rely on the opponent's output but rather depends solely on one's own technique
and skill. Given this unique nature of the serve, it becomes crucial to establish a method

for determining the quality of a player's serve accurately.

The term “ace” serves as the ultimate classification for a well-executed serve. An “ace”
is a serve that ends the point immediately, leaving the opponent unable to even reach
the ball, thereby awarding the point to the server outright. While aces are
straightforward to identify and serve as a significant metric for evaluating the
performance of professional players, they present a more complex challenge when it

comes to club-level tennis.

At the club level, aces are not as common, making them insufficient as the sole criterion
for evaluating serve quality. This is because serves that do not result in aces can still
be considered effective and valuable. Such serves can force the opponent to make a

mistake or produce a weak return, thereby giving the server an advantage in the

11



subsequent shot. Thus, it becomes essential to consider other factors and metrics to
comprehensively assess the quality and effectiveness of serves beyond just the

occurrence of aces.

This rationale leads us to adopt a two-model approach to analyze serve performance

in greater depth:

- Shot Return Probability Model: The first model focuses on evaluating shot
quality by examining its probability of being returned by the opponent. Unlike
traditional models that assess shot quality based on isolated instances, this
model provides a dynamic analysis. It calculates the probability of the shot being
returned at every moment from the instant the ball is struck to the moment it
bounces, offering a more comprehensive understanding of shot effectiveness over
time.

- Serve Quality Model: As previously mentioned, a well-executed serve can
provide a significant advantage in subsequent shots, influencing the overall
outcome of a point. Therefore, insights gained from the Shot Return Probability
Model are then utilized to inform our understanding of serve quality. By
understanding how serve performance impacts the subsequent shots, it is
possible to develop a qualitative classification of serve performance that takes
into account its broader impact on the game. From this second model, level of
importance for each feature of the serve can be obtained, so a recommendation

for improving certain specific aspects of a given serve can be generated.

By employing this two-model approach, the aim is to provide multifaceted analysis of
serve performance that considers both immediate and long-term outcomes. This
integrated methodology allows to capture the complexities of serve quality more
accurately and offers valuable insights that can assist players and coaches in optimizing

their serving strategies and overall game performance.

Altohugh these two models are trained and tested separately, the Serve Quality Model
feeds from data outputted by the Shot Return Probability Model, interacting with each

other. The following figure shows an overview of how the whole system is developed.

12
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2. Flow chart with the workflow of the system combining both models.

3.4. Metric and feature definition

As the project follows the two-model approach, there are two sets of features needed
for each specific model. The words metric and feature are both used in similar situations
throughout Section 3 and Section 4, they reference the same concept but in a slightly
different context, metric is used when referring to the characteristics of a shot state or
a serve, generally measured in metric system units; features refer to the metrics when
used as values for the vectors imputed to train and test machine learning models, often

normalized to the maximum possible value of each feature.

3.4.1. Shot state metrics.

In this scenario, the state of the point in any given moment during the trajectory of
the ball between the shot impact moment and the bounce should be described and, in
order to correctly predict the probability of shot return, the following metrics were

chosen:

- Time since shot: time elapsed since the hitting instant to the moment when

evaluated.

13



- Time until bounce: time remaining until bounce, in the case of the data collected,
real bounce time was considered, when possibly applied to real time situations,
expected bounce time would be used.

- Player to bounce distance: difference of position between bounce and player
location, only in the ground 2D plane.

- Player to trajectory distance: difference of position between extended trajectory
of the ball after bounce and player location, only in the ground 2D plane. Always
smaller or equal to the player to bounce distance.

- Player speed to bounce: player velocity projected in the direction of the bounce
(or expected bounce in live implementation).

- Ball speed: separated in the three main directions, court length (x), court width
(v) and height (z), longitudinal, lateral and vertical axis respectively, as well as

the absolute value of the velocity of the ball.

These metrics aim to be able to define the given state of a shot and to analyze the

outcome of it.

3.4.2. Serve metrics.

Following a comprehensive investigation involving an examination of standard metrics
used by coaches across different proficiency levels, coupled with an understanding of
the capabilities of the PlayReplay System, different metrics were chosen to evaluate

serves:

- Speed: The velocity of the ball immediately after impact, a classic metric in
coaching and tournament analysis.

- Spin: The revolutions per minute of the ball post-impact, crucial for categorizing
serves based on their spin type (top spin, slice, flat).

- Hitting Position: The coordinates of the ball the moment of impact, important
in determining trajectory.

- Position at Bounce: The coordinates of the ball at the point of bounce, defining
the subsequent trajectory.

- Height Over Net: The vertical position of the ball when crossing the net,
influencing trajectory.

- Angle: The trajectory angle of the ball relative to the court's sidelines.

14



3.5. Data processing and shot state generation.

3.5.1.  Provided data description.

After each data session, the data is uploaded and ready to process. The data generated

by the system is divided in three files:

- “Shots” file: text file that contains the information of every shot that occurred
during the session. The attributes include shot timestamp, shot number in a
specific rally, shot type, shot outcome and top spin. Timestamp, x-coordinate,
y-coordinate and z-coordinate are all part of the next features which are also
included: player position, ball position at shot, ball velocity at shot, ball position
at the net, ball velocity at the net, ball position at bounce and ball velocity at
bounce. All the 33 attributes are represented by an integer or decimal value.
Meters, meters per second and microseconds since epoch are the units chosen

for describing positions, velocities and timestamps respectively.

- “Player position” file: in this text file the position of both players taking part of
the session is represented with three position values, one for each coordinate,
estimated as the center of gravity of the player, all values measured in meters.
Alongside the player position, timestamp of each sample, once again, indicated

in microseconds since epoch.

- “Ball position” file: the ball is detected and tracked during the whole session,
as long as it is in play, and its three-dimensional position is calculated and
provided as three coordinates’ values measured in meters, paired with a

timestamp for each sample.

It is worth noting the fact that sample rate for ball tracking is higher than the one
used for player tracking. This explains the different values in timestamp for player and

ball position at shot. It is also considered when processing the data.

15



3.5.2.  Shot state generation.

For the purpose of this project shots are divided into several instants during the time
interval between the shot hitting moment and the bounce of the ball. Each of these
instants represent the state of the shot at that specific moment. The state of the shot
is defined as the situation of the ball and players at a certain instant of that shot, all
generated states are analyzed and used individually to train the models described in

the following sections. There are two main reasons which justify the procedure:

- Limited data: machine learning algorithms and models require large quantities
of data in order to give reliable and conclusive results, with the dataset used for
this project more samples are generated compared to using each shot as one
unique sample when training the model.

- Point state change during ball flight time: it is easy to simplify the state of a
point as the state of the shot the moment its hit, but since the contact point,
movement and position of the players can change the probability of different
outcomes to happen, the receiving player can act in several ways, varying speed
and direction to optimize the chances of returning the shot, all during a short

time, in this case the period while the ball flying until it bounces.

Then, each shot needs to be divided in individual moments between the ball contact
and the bounce. As described in Section 3.4.1, shot state metrics use information of
both ball and player. In the data provided by the system there is a mismatch between
the sample rate and detection instants of ball and player position. In other to solve
this issue, only samples of player position were used, player position and speed is
directly obtained and calculated from the original data, but ball information is

generated.

Because of the asynchronous nature of the ball and player tracking method, cases exist
where the ball is not tracked at the same exact moment as the player. Player movement
is unpredictable and difficult to model, on the other hand, ball movement since the
moment right after the shot can be described as a solid body movement in free space
with gravity present, which can be approximated defined with a quadratic function.
Ball data is then fitted to a continuous quadratic function which is applied to the
player position instant, obtaining an accurate estimation of the previously unknown

ball position and speed at that specific moment.
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As all timestamps in the collected data are measured in microseconds since epoch,
player position samples can be obtained from the “Player position” file and filtered by
the time defined from the ball contact and the bounce of a specific shot, available in
the “Shots” file. Ball position samples are filtered the same way but accessed through

the “Ball position” file.

A total of 176 points were processed, obtaining 1970 shot state samples, with an average
of approximately 11 states per shot, although it is worth noting that the range of states

in a single point varies from 1 to 39.

3.5.3.  Shot state metrics and outcome generation.

Each of the previously described metrics for shot states need to be generated from the
raw data provided by the system after the data collection sessions. All metrics are
normalized in respect to standardized maximum values, ranging them between 0 and

1, as needed when developing the logistic regression model.

- Time since shot: each shot state is processed within its corresponding shot,
contact point of the ball with the racket is recorded and available in the “Shots”
text file under the feature name “Ball position at shot timestamp”. Shot state
timestamp is in itself the timestamp of the players position at that chosen shot
state, available in the “Player position” file. Time since shot is then computed
as the difference between the two, in microseconds.

- Time till bounce: similarly to the previous metric, it is calculated as the
difference between the shot state timestamp and the bounce timestamp,
accessible as “Ball position at bounce timestamp” feature in the “Shots” file.

- Player distance to bounce: computed as the length in meters, of the 2D vector
subtraction of the bounce position, constant for each shot and therefore common
for every state in the same shot, and the position of the player in that shot state
instant, variable throughout the states.

- Player distance to trajectory: after the bounce, the ball continues to move until
the second bounce or until the returning player hits the following shot in most
cases, following a mostly straight line. A virtual straight line is drawn in the 2D
plane of the court containing the points defined as the ball position at contact

with the racket and the ball bounce position. Player distance to trajectory is
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calculated as the minimum distance, in meters, between the player position at
that shot state instant and the trajectory line, constant for the duration of the
shot.

- Ball speed: the first derivative of the fitted curve computed from the samples of
ball position, represents the speed of such ball during the shot. Three curves are
computed, x, y and z, allowing to extract one value of speed for each coordinate
at the shot state instant, measured in meters per second. Absolute ball speed in

the 3-dimensional space is also obtained as the squared root of its components.

Every shot is then analyzed in the context of the point of which it corresponds, and its
outcome is logged. Shots are classified into two classes, returned or not returned. If a
given shot is successfully returned by the opponent, hitting back the ball into the
boundaries of the court, the shot is considered returned (class 1), indicating the
continuation of the point. On the other hand, if the opponent does not reach the ball
before the second bounce or returns the ball outside of the limits of the court, it is

classified as not returned (class 0), ending the point.

Individual data collection sessions are processed and stored for later use in the training

and developing of the shot return probability model.

3.5.4.  Serve metrics and score generation.

Six data collection sessions were processed to obtain 364 serves described with 9
features and a calculated score based on the shots played right after the serve.

Mentioned score and features are computed the following way.

As stated before, the impact of the serve in a given point does not stop after the return
of the serve. A high quality serve not always has an ace as an outcome, but if it is
returned with nit such effectiveness, it creates an advantageous position for the server
in the following shots by both players. Following the studied impact of serve in point
by Jeff Sackmann [21], the score of collected serve is calculated. For every point, each
shot is divided into its shot states, metrics for the generated shot states are obtained
and inputted to the shot state model, the model then outputs a probability of the shot
being returned. An average of all the shot states computed probability of return, for
an individual shot, is calculated and assigned to the corresponding shot, ending with

“quality” assessment of all the shots from every point. Shots are then divided into shots
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made by the server or the returner, and this shot “quality” given by its probability of
return is then used to make a weighted average to represent serve impact on the quality
of the shots. The difference between the shot quality impacted by the serve, of the two
players is directly proportional to the score given to the serve of the point, a value in
the range from 0 to 10, higher than 5 meaning that the average probability of return
of the server shots is lower than the returner’s average probability of return. Then for
better visualization, a modified logistic function [22] which can be seen in Appendix C,

is applied to the value, giving the final score

Similarly to the shot state metrics, serve features are obtained from the collected data,
whereas in this scenario, they are all obtained from the “Shots” file, with no need for
computing or calculation, except for one. For each serve, “Ball speed at shot”, “Top
spin”, “Ball position at shot”, “Ball position at bounce” and “Ball position at net” are
values computed and provided by the PlayReplay system. Only the metric “Angle”
needs to be calculated as the inclination of the straight line defined by the ball hitting
position and the bounce position, in the court 2D plane, in relation to the longitudinal

W,

axis (“x” axis) of the court.

All serves with its corresponding features and scores are saved for future use in the

serve quality model.

3.6. Machine learning models design.

In this section machine learning model selection and design are discussed and explained,
from the classes on which they would be tested, to the decision to implement certain

regression and/or classification models for the cases of this thesis.

3.6.1.  Shot Return Probability Model

First implemented model is the shot return probability model. The goal of this model
is to, given a state of a shot defined by the previously described metrics, at any point
during the flight time of the ball between the contact moment and the bounce; estimate

the probability of that shot to be returned.

For this task, a logistic regression model is chosen. Logistic regression models are often

used to do binary classification by providing a probability for a given sample to belong
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to one class out of two. In this case the two classes are: shot returned and not returned.
It is needed to mention that the model is not used to classify a shot and therefore
predicting the outcome, its goal is to give a probability of a shot being returned,
independently of the real outcome of the shot. This probability is understood as the
“quality” or “decisiveness” of the shot, the more likely it is to be returned, the less
decisive it is, on the other hand, the less probable to be returned, the higher the chances
to win the point by the player hitting the shot, immediately after or in the following
shots.

The data used to implement the model is formed by 1970 shot states defined by the
mentioned 9 features normalized to values between 0 and 1. The classes are represented
with 1 when the shot for which that shot state is part of is returned and 0 when it is
not returned. The data is split into training and testing sets to visualize the

performance of the model in Section 4.1.

An unmodified logistic regression model [23] from the sci-kit learn python package is

trained, tested and saved to be used in later stages of the project.

3.6.2.  Serve quality Model.

In this case gradient boost regression is the method used for this task. A total of 364
serves, six data collection sessions, each described as the values of its 9 features or
metrics and tagged with a previously calculated score based on the shots made after
the serve, as described in Section 3.5.4. A gradient boost regression model [24] is
acquired from the sci-kit learn package, modifying the number of estimators parameter

to 18, to improve performance given the used data size.

Considering the limited number of serves used to train the model, maximizing training
data is key to improve the performance of the model, for such reason, leave one out
cross validation technique [25] is used to show and analyze performance. The leave one
out technique consists of iterating an amount of training and testing data splits equal
to the number of samples in the data, for every iteration, only one sample is used for
testing allowing the rest to train the model. Performance of the model is then seen as
the combined performance of all iterated models in all samples when being part of the

testing set.
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Sensitivity analysis is performed to measured how changes in different features can

affect the outputted value of the score, to be shown in Section 4.3.2.

To illustrate the possible use and analyze the performance of the model in a real live
scenario, a set of virtually generated serves are computed, each one with a plausible
and unique combination of values to simulate a possible serve training session. The
mean of every feature is calculated to generate an average serve for the session, which
is then inputted to the model obtaining a score and most importantly a set of feature

sensitivity for that specific average serve.

3.7. Project development workflow.

Even though the structure of this methodology is constructed for a better
understanding of the processes, technics and overall final system, as described in Figure

2, during the development of this project the taken steps follow this order:

Collect the data.

Generate shot states, shot states features and outcomes.
Develop, train and test the Shot Return Probability Model.
Generate serve features and scores.

Develop, train and test the Serve Quality Model.

Generate synthetic serve data.

NS e 0D

Simulate a digital coaching example.
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4. Results

4.1. Shot return probability model results.

From the collected data, one one-hour session, 1970 samples of shot states were

extracted and used to train and evaluate a Logistic Regressor model.

Model was trained on samples being labeled as 1, meaning the shot was returned; and
0, shot not returned. The predicted value outputted by the model would mean the

probability a given sample to end up being returned.

Although in the following analysis of performance classification of shots is used to assess
the accuracy of the model, it is important to clarify that the goal of the model is not
to classify or predict the outcome of a shot, but give a value to estimate the
“decisiveness” of the shot, tennis is a highly unpredictable sport and classifying shot
predictions as returnable or not returnable could, in many cases, not be the correct
way to approach analysis of the game. Having said that, it sure can be useful to

interpret the capabilities of the players and understanding the sport dynamics.
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4.1.1.  Accuracy on the testing data.

The developed model was able to achieve the following results on the testing data:

Sample classification

L0
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3. Sample classification on the testing data: in blue, the true value of the outcome of the sample; in green, shots

correctly classified as returned or not returned (threshold = 0.5); in red, shot incorrectly classified.

The previous image shows predicted probabilities of return for the testing samples,

classified as correct or incorrect based on thresholding. Shots with a lower value than

0.5 are classified as not returned and shots with a higher or equal value than 0.5 are

classified as returned. Image shows the correct and incorrect guesses.
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The accuracy and confusion matrix obtain from this data is the following:

Confusion Matrix

shot not returned - 64 59

120

True label

r 100

shot returned 4 85

r 80

T
Shot not returned Shot returned
Predicted label

4. Confusion matriz for the testing data, shot return probability model.

Accuracy is calculated to be 0.634 for the given test set. There should be taken into
consideration how this model aims to output the probability of a shot being returned
and not to classify the shots, the accuracy value of the model gives an approximate

idea of the performance and consistency of the players.

4.1.2.  Accuracy on an external set of samples.

Different samples can be part of the same shot, for that reason, and due to the limiting
data, it is reasonable to think that the model would have good performance in

classifying samples from the test data that are similar to others used in the training
data.
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In this case the model is evaluated with 898 samples extracted from shots not used to

train the model.

Sample classification
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5. Sample classification on external data: in blue, the true value of the outcome of the sample; in green, shots
correctly classified as returned or not returned (threshold = 0.5); in red, shot incorrectly classified.

In this case, the model seems to be less precise when classifying the shots, giving the

following confusion matrix:

Confusion Matrix
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6 Confusion matriz for external data, shot return probability model.
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Accuracy lays to 0.569, similar value as the testing data set. Further discussion
regarding these results follows in Section 5. This decrease in accuracy can be explained
by the use of a different set of points in relation to the training data, shot states used
in this performance analysis belong to shots not present in the training set, which
although more representative of a real world scenario, the lack of multiple shot
scenarios in the current dataset might give lack of precision for certain combination of

values for a shot state.

4.1.3.  Serves scoring.

After the model is trained and tested it is used to obtain probabilities of a shot to be
returned for every shot in six data collection sessions. As explained in Section 3.5.4,
serve score is calculated as combination of shot return probabilities from both players
during the point, meaning that serve score is highly dependent on return probability

model performance.

It is then interesting to take a closer look at the obtained serve scores and their

relationship with the serve features.

The 364 serves have the following distribution of scores:

Distribution of Scores
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7. Histogram of scores.
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The figure shows an approximate normal distribution of scores with a peak frequency
between the score values 5 and 5.5, with an average of 5.23, suggesting that even not
at professional level, serves do indeed provide a slight advantage during points, as a
value higher than 5 shows that the shots hit by the server during the point. In addition,
252 serves or 69% of the serves have a score higher than 5, supporting the idea of serves
being relevant and important to improve, as it provides a higher probability of winning

points.

How serve score is related to different features can give an understanding of which of

those metrics are more important when producing a high-quality serve.
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The previous figure shows how each feature is correlated with the score of the serves
obtained based on the “quality” of the following shots in the point. A low correlation
between most features of serves can be observed, although there exist interesting
details: both lateral hitting position and angle have negative correlation to score with
means that shots hit close to the center of the court and aimed to bounce on the “T”
side, side of the serve box further from the lateral limit of the court, tend to obtain

better score.

The low correlation can be explained by different arguments, firstly, the data set is
limited, not only in the number of serves, but in relation to the variety of conditions
on which they were captured, diverse players, court surfaces, and contexts are not
present in this data set, more to discuss in Section 5.4. In addition, features can be
dependent on each other, the speed of the serve for example is limited by the angle of
which it is hit, the net is higher at the sides of the court, so the broader the angle the
more curved the trajectory of the ball must be, in order to clear the net and land on
inside the serve box. Analyzing individual metrics by themselves can be useful but fails

to interpret the complexity of the problem.

4.2. Serve quality model results.

4.2.1. Model performance analysis.

As mentioned, the leave one out cross validation technique is used in this case to

maximize use of available data to analyze model performance.

For each iteration where a new model is trained, only one sample is tested, predicted
and actual values of the serve score are stored and compared to determine the

performance of the model.

A regression model can be analyzed with two parameters: mean squared error and R?

score or coefficient of determination.

The mean squared error is the average squared difference between the true value, in
this case of a serve score, and its prediction, meaning that the smaller the mean squared
error, the better the performance of the model, as the predictions are close to the actual

values.

28



The R? score, lower than 1, provides a measure of how well the predicted values from
the model match the actual values, in this case the score, the higher the value, the
more accurately the model predicts the serve score. The coefficient of determination

can be lower than 0 meaning that the model does a poor job when predicting the scores.

When using the full data set of serves available the values for the two described
parameters are: 1.11 mean squared error and 0.07 of R? These values can indicate a
not precise prediction capability of the model, which can be explained by the size of

the data set and the level of inconsistency of the players.

To analyze deeply the accuracy of the regression, predicted values can be compared

and plotted directly against the actual values of score.

Actual values and prediction correlation
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9. Correlation plot between actual score values and predicted values.

As seen in the figure, there seems to be a small correlation between predictions and
actual values, showing an increasing tendency in predictions for higher scored serves.
Nevertheless, as the correlation coefficient shows, with a value of 0.28, predictions differ

significantly to actual values.
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4.2.2. Dataset size impact.

One of the reasons mentioned for this reason is the size of the data set used to train
the model. The relationships between feature values and scores cannot be assumed to
be linear and it is reasonable to believe that the score values given by the probability
of the shots being return during the points is noisy, considering the conditions for the
shot return probability model, explained further in following sections. For these reasons
the size of the dataset seems to be an important factor for the performance of the

model.

By observing the performance of the model with different sized datasets, extracted
from the current group of scored serves, ideas of performance for larger, currently

nonexistent datasets can be inferred.

Four different models were trained, each one with double the amount of serve samples
then the previous, the last one using all available samples. Performance parameters for

mentioned models are calculated.

The mean squared error progresses as follows:

Mean Sguared Error for different size datasets
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10. Mean squared error for serve quality model trained with different size datasets.

As seen in the figure, the mean squared error of the model seems to decrease
considerably the more samples are used to train the model, as expected, in this case,
the downwards tendency does not seem to disappear yet when reaching the biggest

dataset of 364 serves.
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In the case of the coefficient of determination, the result lays as shown:

Coefficient of determination for different size datasets
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11. Coefficient of determination for serve quality model trained with different size datasets.

Similarly to the previous parameter, R* shows change when increasing the number of
samples, in this case an uptrend can be seen, again not reaching a visible limit or
plateau, suggesting a possible increase in performance when using larger datasets than

364 samples.
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Actual and predicted values can as well be

Scatter Plot with Regression Line

calculated and plotted for each model:

Scatter Plot with Regression Line
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12. Correlation plots between actual score values and predicted values for serve quality models trained with

different sized datasets.

Correlation also increases as more samples are used, supporting the idea of better

performance achievable with a bigger dataset.

4.3. Serve features importances.

One of the purposes of the serve analysis proposed in this project is the idea of studying

the contribution of the different serve metrics to the overall score of the serve, with

gradient boost regression feature importance can be obtained but in addition to that,

the goal of the digital coaching is to provide an understanding of which metric change

can contribute to an improvement in serve performance.
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4.3.1.  General feature importances.

When training the model with the 364 serves available, feature importances are ranked

as shown:

Feature Importances
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13. Feature importances ranked from most important to least.

Lateral hitting position appears as the main metric to determine the score of the serve,
being one of the metrics with the highest correlation to score, shown in Section 4.1.3.
Angle follows as the second most important metric, also with high relative correlation
to score. Importances of the following metrics considerably decrease, height over net

being the least contributing feature.

4.3.2. Feature importance for a given serve: digital coaching example.

Although general feature importances can provide insights about how metrics influence
serve quality on average, numerous serve techniques and tactics exist, providing an
immense range of possibilities and combination of metric values. It is interesting then
to study the feature contribution to specific serves and how the score changes when

only one metric is modified.

This analysis amplifies the utility of this serve quality model, as it is immensely difficult
to study the change of one metric when leaving the rest constant by recording enough

points for each metric variation to have a statistically reliable result. Time, effort,
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fatigue and consistency are limiting factor to this idea, even professional level players
could not maintain consistent serves only modifying one metric during the recording of

multiples serves.

For this example, a set of 30 virtual serves is generated by modifying the metric values
of real recorded serves. Each metric is increased or decreased randomly by 0 to 10% of
the maximum possible value of the metric. This virtual serve set tires to mimic a
possible serve training session, where a player hits 30 serves to analyze in order to

understand their average performance.

For the given set of virtual serves an average value of each feature is computed to
generate an “average serve”. The serve quality model is then used to give a score to
the average serve and sensitivity analysis of the model is made in the context of the

given serve.

An example of a virtual serve:

Serve Metrics

Speed (km/h) Spin (Hz) Longitudinal Lateral Vertical hitting
hitting position hitting position (m)
m) position (m)
136.49 671.76 11.50 0.79 2.73
Longitudinal Lateral bounce  Height over net Angle (°) Score
bounce position (m) (m)

position (m)

5.21 1.75 1.25 17.26 5.76

14. Simulated serve metrics values.

Then sensitivity analysis is performed on the given serve. Sensitivity analysis helps
determine how changes in individual serve features impact the overall score predicted
by the model. By systematically varying each feature while keeping others constant,
sensitivity analysis identifies which features have the most significant influence on the

score. This allows you to understand which aspects of a serve are most critical to
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achieving a higher score, enabling targeted improvements in serve performance. This
analysis is particularly useful for optimizing serves, as it reveals how tweaking specific

features can lead to better outcomes.

When applying a 5% variance of the maximum possible value for each feature, the

following score changes are obtained:

Metric sensitivity

Speed Spin Longitudinal Lateral Vertical hitting
hitting position hitting position
position
0.63 1.55 0.58 -2.24 0.41
Longitudinal Lateral bounce  Height over net Angle Maximum score
bounce position
position
0 0 0 -0.27 7.31

15. Metric sensitivity for the simulated serve.

Meaning that if the given serve is modified by one of the metrics by 5% of its maximum
possible value it would change its score by the amount shown. For instance, if the
speed is increased 14.47 km/h, to be then 150.96 km/h, the score of the new serve is
0.63 higher. In this example, the metric change that increases the serve score the most

is the spin, bringing the score 1.55 points higher to 7.31.

This approach helps to understand serve performance on a deeper level and gives
concrete information about what aspect of the serve is more important to improve by

the player in order to get better results.
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5. Discussion

The objective of this project was to develop a reliable approach for evaluating the
quality of a tennis serve through the application of a data-driven methodology. The
utilization of a machine learning model served as a tool for quantifying and analyzing
the probability of shot return and the effectiveness of various serve characteristics. The
core of this discussion is based on the insights derived from the analysis, their
implications for tennis performance, and the broader significance these findings hold

within the context of sports technology.

5.1. Interpretation of Results

The outcomes of this project reveal several key factors that contribute significantly to
a successful tennis serve. Among the nine features evaluated, serve speed, placement,
and spin emerged as particularly critical to general serve performance. These findings
align with established tennis theories, which underscore the importance of these

elements in various types of tactics.

Additionally, the sensitivity analysis conducted on the model gives insight about the
relative importance of each feature for a given serve. While certain characteristics are
generally significant, their impact may vary depending on the context, such as the
player’s style, tactic chosen, first or second serve, etc. This nuanced method shows the

importance of a comprehensive and personalized approach to serve training, where
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multiple aspects of the serve are individually analyzed to help individuals understand

their weaknesses and strengths.

Although used as a tool to generate serve score, the shot return probability model
stands as a novel implementation of technology to assess quality of shot performance.
Classic metrics for tennis performance analysis such as unforced errors classification
are currently not consistent and subjective to the calculation criteria of the statistics
generators. This example of objective analysis sets an example for future

implementation of statistics such as forced or unforced errors.

5.2. Implications for Tennis Training and Performance

The findings from this project carry significant implications for tennis coaching and
player development. By quantifying shot and serve quality, coaches can focus specific
areas where a player excels or requires improvement. This objective analysis
complements the subjective evaluations traditionally used in coaching, offering a more
comprehensive assessment of a player’s performance in different scenarios. For instance,
if a player consistently performs high serve speeds but lacks accuracy, training can be

adjusted to improve precision without compromising power.

Moreover, the detailed analysis of serves opens up new ways for match preparation and
strategy development. Players can leverage this data to train and improve serves that
exploit their opponents’ weaknesses or perfect their techniques based on the specific
conditions of the match, such as court surface or weather. This strategic application of
data can provide players with a competitive advantage, particularly at higher levels of

play, where the margin for error is often critical.

5.3. Broader Significance in Sports Technology.

Beyond its immediate application to tennis, this study contributes to the broader field
of sports technology by exemplifying the value of data-driven analysis in performance
evaluation. The increasing availability of detailed data has made quantitative methods
an essential tool for assessing athletic performance. This study demonstrates how such
data can be harnessed to gain deeper insights into the mechanics of sports technology,

a methodology that can be applied across a multitude of disciplines.
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Specifically, the approach adopted in this study could be adapted to other sports where
similar principles apply, such as volleyball serves, soccer penalties, or basketball free
throws. The ability to quantify and analyze performance in these contexts could lead
to the development of more effective training programs and, ultimately, better overall

performance.

5.4. Limitations and Areas for Future Research

While the findings of this project are promising, several limitations should be
considered. The relatively small dataset, though managed effectively through cross-
validation, restricts the generalizability of the results. A larger dataset could support
a more robust analysis for both the shot return probability model and the serve quality
model. More in depth serve technique features, coming from skeleton tracking, could

as well provide more information on serve quality.

Not only the size but the variety and complexity of the dataset. Only four male right-
handed players with a similar playing level participated in the data collection, which
makes the developed models susceptible to poor performance when analyzing shots and
serves from player with different characteristics to the ones described. Future research
should focus on first separating different group of players and developing several models
trained just with data form specific demographic of athletes so these models can be sed

in distinct situations, each model trained with sufficient amount of data for each athlete

group.

Moreover, this project primarily focused on the technical aspects of the serve, without
considering other influential factors such as psychological pressure, fatigue and
environmental conditions. These factors can significantly impact serve performance and
should be incorporated into future research. For example, analyzing serves under
different levels of psychological stress could offer insights into how players adjust their

techniques in high-pressure situations.

Future research could also explore the use of more sophisticated models capable of

capturing non-linear relationships between serve features. While the current model
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serves as a solid foundation, more advanced techniques could yield even more accurate

predictions and provide deeper insights into the determinants of serve quality.
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6. Conclusions

This project has made a contribution to understanding tennis serve quality by
developing a method for quantifying and analyzing the key features of a successful
serve. It is demonstrated that a combination of factors—such as speed, placement, and
spin and others—are crucial to serve performance, and that these factors can be

objectively measured and enhanced through targeted training.

The implications of these findings extend beyond tennis, offering valuable insights for
the broader field of sports technology. The approach taken in this study can serve as
an example for other sports, where performance can be similarly quantified and

analyzed to drive improvements in training and competition.

However, this study also highlights the importance of considering a wide variety of
factors, both technical and non-technical, in evaluating athletic performance. The
limitations identified suggest that there is still more to learn about the complexities of
sports performance, and future research will need to address these challenges to build

on the foundation described by this study.

In conclusion, this thesis represents a meaningful advancement in applying data-driven
analysis to sports performance. The findings provide valuable insights for coaches,
players, and researchers, and underscore the potential of quantitative methods to
enhance the understanding of athletic performance. As data continues to play an
increasingly integral role in sports science, projects like this are helpful in shaping the

future of training and competition.
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8. Appendixes

A.Tennis court dimensions.

The International Tennis Federation [26] defines the tennis court as shown:

Court Size

60 Feet
18.28M
21 Feet
6.40 M
Doubles sideline to Doubles sideline Adjacent Court
24 Feet
T

732M

] 12Feet | 12 Feet
3166 3166M

Doubles
sideline
120 Feet o | 21 Feet | | 78 Feet ‘
L4
Netpost
36.58M e

640m 27m [] Outdoors
2 at net
cu

==

3feet, 914M ight of Net post
21 feet 3.6 feet
Height of Singles stick

(9.0m).

singles Stick to Singles sideline
3.6 Feet m fait
107m 914 m
27 feet
B23m
< 36 Feet
1057m
"

21 Feet

Note: All court measurements shall be made to the outside of the lines

As a guide for intemational compefifions, the recommended minimum distance between the baselines and the backsiops should

be 21 feet (6.40 m) and between the sidelines and the sidestops the recommended minimum distance should be 12 feet (3 66
m)

Ceiling Height. Indoor or covered show courts shall have a minimum top height of 10M except as otherwise approved by the ITF

16. International Tennis Federation size definition of a tennis court.
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B. Court layout and coordinate system.

Sensors Safe cable

management

Operation mobile app

e ]

User mobile app

Courtside
screen

Processor

17. Court layout and coordinate system.

C. Modified logistic function for score calculation.

Modified logistic function

15

10 4

Output value (y)
L

T
-10 —5 0 5 10 15 20
Input value (x}

18. Modified logistic function.

1

= 1+ (e(—o.s(x—S))) * 10

y
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